提交 b31d67ea 编写于 作者: H HydrogenSulfate

add flexible configuration for disable det model(C++)

上级 6cf954e1
...@@ -37,306 +37,320 @@ ...@@ -37,306 +37,320 @@
using namespace std; using namespace std;
using namespace cv; using namespace cv;
DEFINE_string(config, DEFINE_string(config, "", "Path of yaml file");
"", "Path of yaml file"); DEFINE_string(c, "", "Path of yaml file");
DEFINE_string(c,
"", "Path of yaml file");
void DetPredictImage(const std::vector <cv::Mat> &batch_imgs, void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
const std::vector <std::string> &all_img_paths, const std::vector<std::string> &all_img_paths,
const int batch_size, Detection::ObjectDetector *det, const int batch_size, Detection::ObjectDetector *det,
std::vector <Detection::ObjectResult> &im_result, std::vector<Detection::ObjectResult> &im_result,
std::vector<int> &im_bbox_num, std::vector<double> &det_t, std::vector<double> &det_t, const bool visual_det = false,
const bool visual_det = false,
const bool run_benchmark = false, const bool run_benchmark = false,
const std::string &output_dir = "output") { const std::string &output_dir = "output") {
int steps = ceil(float(all_img_paths.size()) / batch_size); int steps = ceil(float(all_img_paths.size()) / batch_size);
// printf("total images = %d, batch_size = %d, total steps = %d\n", // printf("total images = %d, batch_size = %d, total steps = %d\n",
// all_img_paths.size(), batch_size, steps); // all_img_paths.size(), batch_size, steps);
for (int idx = 0; idx < steps; idx++) { for (int idx = 0; idx < steps; idx++) {
int left_image_cnt = all_img_paths.size() - idx * batch_size; int left_image_cnt = all_img_paths.size() - idx * batch_size;
if (left_image_cnt > batch_size) { if (left_image_cnt > batch_size) {
left_image_cnt = batch_size; left_image_cnt = batch_size;
} }
// for (int bs = 0; bs < left_image_cnt; bs++) { // for (int bs = 0; bs < left_image_cnt; bs++) {
// std::string image_file_path = all_img_paths.at(idx * batch_size+bs); // std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
// cv::Mat im = cv::imread(image_file_path, 1); // cv::Mat im = cv::imread(image_file_path, 1);
// batch_imgs.insert(batch_imgs.end(), im); // batch_imgs.insert(batch_imgs.end(), im);
// } // }
// Store all detected result // Store all detected result
std::vector <Detection::ObjectResult> result; std::vector<Detection::ObjectResult> result;
std::vector<int> bbox_num; std::vector<int> bbox_num;
std::vector<double> det_times; std::vector<double> det_times;
bool is_rbox = false; bool is_rbox = false;
if (run_benchmark) { if (run_benchmark) {
det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times); det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times);
} else { } else {
det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times); det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
// get labels and colormap // get labels and colormap
auto labels = det->GetLabelList(); auto labels = det->GetLabelList();
auto colormap = Detection::GenerateColorMap(labels.size()); auto colormap = Detection::GenerateColorMap(labels.size());
int item_start_idx = 0; int item_start_idx = 0;
for (int i = 0; i < left_image_cnt; i++) { for (int i = 0; i < left_image_cnt; i++) {
cv::Mat im = batch_imgs[i]; cv::Mat im = batch_imgs[i];
int detect_num = 0; int detect_num = 0;
for (int j = 0; j < bbox_num[i]; j++) { for (int j = 0; j < bbox_num[i]; j++) {
Detection::ObjectResult item = result[item_start_idx + j]; Detection::ObjectResult item = result[item_start_idx + j];
if (item.confidence < det->GetThreshold() || item.class_id == -1) { if (item.confidence < det->GetThreshold() || item.class_id == -1) {
continue; continue;
} }
detect_num += 1; detect_num += 1;
im_result.push_back(item); im_result.push_back(item);
if (visual_det) { if (visual_det) {
if (item.rect.size() > 6) { if (item.rect.size() > 6) {
is_rbox = true; is_rbox = true;
printf( printf(
"class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n", "class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
item.class_id, item.confidence, item.rect[0], item.rect[1], item.class_id, item.confidence, item.rect[0], item.rect[1],
item.rect[2], item.rect[3], item.rect[4], item.rect[5], item.rect[2], item.rect[3], item.rect[4], item.rect[5],
item.rect[6], item.rect[7]); item.rect[6], item.rect[7]);
} else { } else {
printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
item.class_id, item.confidence, item.rect[0], item.rect[1], item.class_id, item.confidence, item.rect[0], item.rect[1],
item.rect[2], item.rect[3]); item.rect[2], item.rect[3]);
}
}
}
im_bbox_num.push_back(detect_num);
item_start_idx = item_start_idx + bbox_num[i];
// Visualization result
if (visual_det) {
std::cout << all_img_paths.at(idx * batch_size + i)
<< " The number of detected box: " << detect_num
<< std::endl;
cv::Mat vis_img = Detection::VisualizeResult(im, im_result, labels,
colormap, is_rbox);
std::vector<int> compression_params;
compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
compression_params.push_back(95);
std::string output_path(output_dir);
if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
output_path += OS_PATH_SEP;
}
std::string image_file_path = all_img_paths.at(idx * batch_size + i);
output_path +=
image_file_path.substr(image_file_path.find_last_of('/') + 1);
cv::imwrite(output_path, vis_img, compression_params);
printf("Visualized output saved as %s\n", output_path.c_str());
}
} }
}
}
// im_bbox_num.push_back(detect_num);
item_start_idx = item_start_idx + bbox_num[i];
// Visualization result
if (visual_det) {
std::cout << all_img_paths.at(idx * batch_size + i)
<< " The number of detected box: " << detect_num
<< std::endl;
cv::Mat vis_img = Detection::VisualizeResult(im, im_result, labels,
colormap, is_rbox);
std::vector<int> compression_params;
compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
compression_params.push_back(95);
std::string output_path(output_dir);
if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
output_path += OS_PATH_SEP;
}
std::string image_file_path = all_img_paths.at(idx * batch_size + i);
output_path +=
image_file_path.substr(image_file_path.find_last_of('/') + 1);
cv::imwrite(output_path, vis_img, compression_params);
printf("Visualized output saved as %s\n", output_path.c_str());
} }
det_t[0] += det_times[0]; }
det_t[1] += det_times[1];
det_t[2] += det_times[2];
} }
det_t[0] += det_times[0];
det_t[1] += det_times[1];
det_t[2] += det_times[2];
}
} }
void PrintResult(std::string &img_path, void PrintResult(std::string &img_path,
std::vector <Detection::ObjectResult> &det_result, std::vector<Detection::ObjectResult> &det_result,
std::vector<int> &indeices, VectorSearch &vector_search, std::vector<int> &indeices, VectorSearch *vector_search_ptr,
SearchResult &search_result) { SearchResult &search_result) {
printf("%s:\n", img_path.c_str()); printf("%s:\n", img_path.c_str());
for (int i = 0; i < indeices.size(); ++i) { for (int i = 0; i < indeices.size(); ++i) {
int t = indeices[i]; int t = indeices[i];
printf("\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i, printf(
det_result[t].rect[0], det_result[t].rect[1], det_result[t].rect[2], "\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i,
det_result[t].rect[3], det_result[t].confidence, det_result[t].rect[0], det_result[t].rect[1], det_result[t].rect[2],
vector_search.GetLabel(search_result.I[search_result.return_k * t]) det_result[t].rect[3], det_result[t].confidence,
.c_str()); vector_search_ptr->GetLabel(search_result.I[search_result.return_k * t])
} .c_str());
}
} }
int main(int argc, char **argv) { int main(int argc, char **argv) {
google::ParseCommandLineFlags(&argc, &argv, true); google::ParseCommandLineFlags(&argc, &argv, true);
std::string yaml_path = ""; std::string yaml_path = "";
if (FLAGS_config == "" && FLAGS_c == "") { if (FLAGS_config == "" && FLAGS_c == "") {
std::cerr << "[ERROR] usage: " << std::endl std::cerr << "[ERROR] usage: " << std::endl
<< argv[0] << " -c $yaml_path" << std::endl << argv[0] << " -c $yaml_path" << std::endl
<< "or:" << std::endl << "or:" << std::endl
<< argv[0] << " -config $yaml_path" << std::endl; << argv[0] << " -config $yaml_path" << std::endl;
exit(1); exit(1);
} else if (FLAGS_config != "") { } else if (FLAGS_config != "") {
yaml_path = FLAGS_config; yaml_path = FLAGS_config;
} else { } else {
yaml_path = FLAGS_c; yaml_path = FLAGS_c;
} }
YamlConfig config(yaml_path); YamlConfig config(yaml_path);
config.PrintConfigInfo(); config.PrintConfigInfo();
// initialize detector, rec_Model, vector_search // initialize detector
Feature::FeatureExtracter feature_extracter(config.config_file); Detection::ObjectDetector *detector_ptr = nullptr;
Detection::ObjectDetector detector(config.config_file); if (config.config_file["Global"]["det_inference_model_dir"].Type() !=
VectorSearch searcher(config.config_file); YAML::NodeType::Null &&
!config.config_file["Global"]["det_inference_model_dir"]
.as<std::string>()
.empty()) {
detector_ptr = new Detection::ObjectDetector(config.config_file);
}
// config // initialize feature_extractor
const int batch_size = config.config_file["Global"]["batch_size"].as<int>(); Feature::FeatureExtracter *feature_extracter_ptr =
bool visual_det = false; new Feature::FeatureExtracter(config.config_file);
if (config.config_file["Global"]["visual_det"].IsDefined()) { // initialize vector_searcher
visual_det = config.config_file["Global"]["visual_det"].as<bool>(); VectorSearch *vector_searcher_ptr = new VectorSearch(config.config_file);
}
bool benchmark = false; // config
if (config.config_file["Global"]["benchmark"].IsDefined()) { const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
benchmark = config.config_file["Global"]["benchmark"].as<bool>(); bool visual_det = false;
} if (config.config_file["Global"]["visual_det"].IsDefined()) {
int max_det_results = 5; visual_det = config.config_file["Global"]["visual_det"].as<bool>();
if (config.config_file["Global"]["max_det_results"].IsDefined()) { }
max_det_results = config.config_file["Global"]["max_det_results"].as<int>(); bool benchmark = false;
if (config.config_file["Global"]["benchmark"].IsDefined()) {
benchmark = config.config_file["Global"]["benchmark"].as<bool>();
}
int max_det_results = 5;
if (config.config_file["Global"]["max_det_results"].IsDefined()) {
max_det_results = config.config_file["Global"]["max_det_results"].as<int>();
}
float rec_nms_thresold = 0.05;
if (config.config_file["Global"]["rec_nms_thresold"].IsDefined()) {
rec_nms_thresold =
config.config_file["Global"]["rec_nms_thresold"].as<float>();
}
// load image_file_path
std::string path =
config.config_file["Global"]["infer_imgs"].as<std::string>();
std::vector<std::string> img_files_list;
if (cv::utils::fs::isDirectory(path)) {
std::vector<cv::String> filenames;
cv::glob(path, filenames);
for (auto f : filenames) {
img_files_list.push_back(f);
} }
float rec_nms_thresold = 0.05; } else {
if (config.config_file["Global"]["rec_nms_thresold"].IsDefined()) { img_files_list.push_back(path);
rec_nms_thresold = }
config.config_file["Global"]["rec_nms_thresold"].as<float>(); std::cout << "img_file_list length: " << img_files_list.size() << std::endl;
// for time log
std::vector<double> cls_times = {0, 0, 0};
std::vector<double> det_times = {0, 0, 0};
std::vector<double> search_times = {0, 0, 0};
int instance_num = 0;
// for read images
std::vector<cv::Mat> batch_imgs;
std::vector<std::string> img_paths;
// for detection
std::vector<Detection::ObjectResult> det_result;
// for vector search
std::vector<float> features;
std::vector<float> feature;
// for nms
std::vector<int> indeices;
int warmup_iter = img_files_list.size() > 5 ? 5 : img_files_list.size();
if (benchmark) {
img_files_list.insert(img_files_list.begin(), img_files_list.begin(),
img_files_list.begin() + warmup_iter);
}
for (int idx = 0; idx < img_files_list.size(); ++idx) {
std::string img_path = img_files_list[idx];
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << img_path
<< "\n";
exit(-1);
} }
cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
// load image_file_path batch_imgs.push_back(srcimg);
std::string path = img_paths.push_back(img_path);
config.config_file["Global"]["infer_imgs"].as<std::string>();
std::vector <std::string> img_files_list; // step1: get all detection results if enable detector
if (cv::utils::fs::isDirectory(path)) { if (detector_ptr != nullptr) {
std::vector <cv::String> filenames; DetPredictImage(batch_imgs, img_paths, batch_size, detector_ptr,
cv::glob(path, filenames); det_result, det_times, visual_det, false);
for (auto f : filenames) {
img_files_list.push_back(f);
}
} else {
img_files_list.push_back(path);
} }
std::cout << "img_file_list length: " << img_files_list.size() << std::endl;
// for time log // select max_det_results bbox
std::vector<double> cls_times = {0, 0, 0}; if (det_result.size() > max_det_results) {
std::vector<double> det_times = {0, 0, 0}; det_result.resize(max_det_results);
std::vector<double> search_times = {0, 0, 0};
int instance_num = 0;
// for read images
std::vector <cv::Mat> batch_imgs;
std::vector <std::string> img_paths;
// for detection
std::vector <Detection::ObjectResult> det_result;
std::vector<int> det_bbox_num;
// for vector search
std::vector<float> features;
std::vector<float> feature;
// for nms
std::vector<int> indeices;
int warmup_iter = img_files_list.size() > 5 ? 5 : img_files_list.size();
if (benchmark) {
img_files_list.insert(img_files_list.begin(), img_files_list.begin(),
img_files_list.begin() + warmup_iter);
} }
instance_num += det_result.size();
for (int idx = 0; idx < img_files_list.size(); ++idx) { // step2: add the whole image for recognition to improve recall
std::string img_path = img_files_list[idx]; Detection::ObjectResult result_whole_img = {
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR); {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
if (!srcimg.data) { det_result.push_back(result_whole_img);
std::cerr << "[ERROR] image read failed! image path: " << img_path
<< "\n"; // step3: extract feature for all boxes in an inmage
exit(-1); SearchResult search_result;
} for (int j = 0; j < det_result.size(); ++j) {
cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB); int w = det_result[j].rect[2] - det_result[j].rect[0];
int h = det_result[j].rect[3] - det_result[j].rect[1];
cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
cv::Mat crop_img = srcimg(rect);
feature_extracter_ptr->Run(crop_img, feature, cls_times);
features.insert(features.end(), feature.begin(), feature.end());
}
batch_imgs.push_back(srcimg); // step4: get search result
img_paths.push_back(img_path); auto search_start = std::chrono::steady_clock::now();
search_result =
vector_searcher_ptr->Search(features.data(), det_result.size());
auto search_end = std::chrono::steady_clock::now();
// step1: get all detection results // nms for search result
DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result, for (int i = 0; i < det_result.size(); ++i) {
det_bbox_num, det_times, visual_det, false); det_result[i].confidence = search_result.D[search_result.return_k * i];
}
NMSBoxes(det_result, vector_searcher_ptr->GetThreshold(), rec_nms_thresold,
indeices);
auto nms_end = std::chrono::steady_clock::now();
std::chrono::duration<float> search_diff = search_end - search_start;
search_times[1] += double(search_diff.count() * 1000);
// select max_det_results bbox std::chrono::duration<float> nms_diff = nms_end - search_end;
if (det_result.size() > max_det_results) { search_times[2] += double(nms_diff.count() * 1000);
det_result.resize(max_det_results);
}
instance_num += det_result.size();
// step2: add the whole image for recognition to improve recall
Detection::ObjectResult result_whole_img = {
{0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
det_result.push_back(result_whole_img);
det_bbox_num[0] = det_result.size() + 1;
// step3: extract feature for all boxes in an inmage
SearchResult search_result;
for (int j = 0; j < det_result.size(); ++j) {
int w = det_result[j].rect[2] - det_result[j].rect[0];
int h = det_result[j].rect[3] - det_result[j].rect[1];
cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
cv::Mat crop_img = srcimg(rect);
feature_extracter.Run(crop_img, feature, cls_times);
features.insert(features.end(), feature.begin(), feature.end());
}
// step4: get search result // print result
auto search_start = std::chrono::steady_clock::now(); if (not benchmark or (benchmark and idx >= warmup_iter))
search_result = searcher.Search(features.data(), det_result.size()); PrintResult(img_path, det_result, indeices, vector_searcher_ptr,
auto search_end = std::chrono::steady_clock::now(); search_result);
// nms for search result // for postprocess
for (int i = 0; i < det_result.size(); ++i) { batch_imgs.clear();
det_result[i].confidence = search_result.D[search_result.return_k * i]; img_paths.clear();
} det_result.clear();
NMSBoxes(det_result, searcher.GetThreshold(), rec_nms_thresold, indeices); feature.clear();
auto nms_end = std::chrono::steady_clock::now(); features.clear();
std::chrono::duration<float> search_diff = search_end - search_start; indeices.clear();
search_times[1] += double(search_diff.count() * 1000); if (benchmark and warmup_iter == idx + 1) {
det_times = {0, 0, 0};
std::chrono::duration<float> nms_diff = nms_end - search_end; cls_times = {0, 0, 0};
search_times[2] += double(nms_diff.count() * 1000); search_times = {0, 0, 0};
instance_num = 0;
// print result
if (not benchmark or (benchmark and idx >= warmup_iter))
PrintResult(img_path, det_result, indeices, searcher, search_result);
// for postprocess
batch_imgs.clear();
img_paths.clear();
det_bbox_num.clear();
det_result.clear();
feature.clear();
features.clear();
indeices.clear();
if (benchmark and warmup_iter == idx + 1) {
det_times = {0, 0, 0};
cls_times = {0, 0, 0};
search_times = {0, 0, 0};
instance_num = 0;
}
} }
}
if (benchmark) { if (benchmark) {
std::string presion = "fp32"; std::string presion = "fp32";
if (config.config_file["Global"]["use_fp16"].IsDefined() and if (config.config_file["Global"]["use_fp16"].IsDefined() and
config.config_file["Global"]["use_fp16"].as<bool>()) config.config_file["Global"]["use_fp16"].as<bool>())
presion = "fp16"; presion = "fp16";
bool use_gpu = config.config_file["Global"]["use_gpu"].as<bool>(); bool use_gpu = config.config_file["Global"]["use_gpu"].as<bool>();
bool use_tensorrt = config.config_file["Global"]["use_tensorrt"].as<bool>(); bool use_tensorrt = config.config_file["Global"]["use_tensorrt"].as<bool>();
bool enable_mkldnn = bool enable_mkldnn =
config.config_file["Global"]["enable_mkldnn"].as<bool>(); config.config_file["Global"]["enable_mkldnn"].as<bool>();
int cpu_num_threads = int cpu_num_threads =
config.config_file["Global"]["cpu_num_threads"].as<int>(); config.config_file["Global"]["cpu_num_threads"].as<int>();
int batch_size = config.config_file["Global"]["batch_size"].as<int>(); int batch_size = config.config_file["Global"]["batch_size"].as<int>();
std::vector<int> shape = std::vector<int> shape =
config.config_file["Global"]["image_shape"].as < std::vector < int >> (); config.config_file["Global"]["image_shape"].as<std::vector<int>>();
std::string det_shape = std::to_string(shape[0]); std::string det_shape = std::to_string(shape[0]);
for (int i = 1; i < shape.size(); ++i)
det_shape = det_shape + ", " + std::to_string(shape[i]); for (int i = 1; i < shape.size(); ++i) {
det_shape = det_shape + ", " + std::to_string(shape[i]);
AutoLogger autolog_det("Det", use_gpu, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, det_shape, presion,
det_times, img_files_list.size() - warmup_iter);
autolog_det.report();
AutoLogger autolog_rec("Rec", use_gpu, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, "3, 224, 224", presion,
cls_times, instance_num);
autolog_rec.report();
AutoLogger autolog_search("Search", false, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, "dynamic", presion,
search_times, instance_num);
autolog_search.report();
} }
return 0;
AutoLogger autolog_det("Det", use_gpu, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, det_shape, presion,
det_times, img_files_list.size() - warmup_iter);
autolog_det.report();
AutoLogger autolog_rec("Rec", use_gpu, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, "3, 224, 224", presion,
cls_times, instance_num);
autolog_rec.report();
AutoLogger autolog_search("Search", false, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, "dynamic", presion,
search_times, instance_num);
autolog_search.report();
}
return 0;
} }
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册