diff --git a/README.md b/README.md index 5f1c923445527be89ff1266259cee31c78720594..be222a701fc6636e685aa81188b9972f47027558 100644 --- a/README.md +++ b/README.md @@ -103,6 +103,7 @@ ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于 | ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar) | | ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | | ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar) | +| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar) | | ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | | ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) | | ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | @@ -235,6 +236,7 @@ HRNet系列模型的精度、速度指标如下表所示,更多关于该系列 | HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) | | HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) | | HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) | +| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) | | HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) | diff --git a/docs/en/models/HRNet_en.md b/docs/en/models/HRNet_en.md index b27d0f15be6041897893ae82374d9148d839d128..22935b8f39ef49970ceeba6098852d5711e35c1e 100644 --- a/docs/en/models/HRNet_en.md +++ b/docs/en/models/HRNet_en.md @@ -28,6 +28,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC | HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 | | HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 | | HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 | +| HRNet_W48_C_ssld | 0.836 | 0.968 | 0.793 | 0.945 | 34.580 | 77.470 | | HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 | @@ -42,6 +43,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC | HRNet_W40_C | 224 | 256 | 10.739 | | HRNet_W44_C | 224 | 256 | 11.497 | | HRNet_W48_C | 224 | 256 | 12.165 | +| HRNet_W48_C_ssld | 224 | 256 | 12.165 | | HRNet_W64_C | 224 | 256 | 15.003 | @@ -58,4 +60,5 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC | HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 | | HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 | | HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 | +| HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 | | HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 | diff --git a/docs/en/models/ResNet_and_vd_en.md b/docs/en/models/ResNet_and_vd_en.md index a73fe00c82b2659d4c0f2bab1c47ac2d1857195d..5a947081561f43d82a3322256a9fda22b68fe380 100644 --- a/docs/en/models/ResNet_and_vd_en.md +++ b/docs/en/models/ResNet_and_vd_en.md @@ -32,6 +32,7 @@ As can be seen from the above curves, the higher the number of layers, the highe | ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 | | ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 | | ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 | +| ResNet34_vd_ssld | 0.797 | 0.949 | | | 7.390 | 21.820 | | ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 | | ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 | | ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 | @@ -57,6 +58,7 @@ As can be seen from the above curves, the higher the number of layers, the highe | ResNet18_vd | 224 | 256 | 1.603 | | ResNet34 | 224 | 256 | 2.272 | | ResNet34_vd | 224 | 256 | 2.343 | +| ResNet34_vd_ssld | 224 | 256 | 2.343 | | ResNet50 | 224 | 256 | 2.939 | | ResNet50_vc | 224 | 256 | 3.041 | | ResNet50_vd | 224 | 256 | 3.165 | @@ -78,6 +80,7 @@ As can be seen from the above curves, the higher the number of layers, the highe | ResNet18_vd | 224 | 256 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 | | ResNet34 | 224 | 256 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 | | ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 | +| ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 | | ResNet50 | 224 | 256 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 | | ResNet50_vc | 224 | 256 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 | | ResNet50_vd | 224 | 256 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 | diff --git a/docs/en/models/models_intro_en.md b/docs/en/models/models_intro_en.md index fa3518506f78f472f46c2f4f167802e307d5973b..32fba01fefbb11f5185d341b2a69e62c689f40da 100644 --- a/docs/en/models/models_intro_en.md +++ b/docs/en/models/models_intro_en.md @@ -45,6 +45,7 @@ python tools/infer/predict.py \ - [ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar) - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar) + - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar) - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) - [ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) @@ -149,11 +150,13 @@ python tools/infer/predict.py \ - HRNet series - HRNet series[[13](#ref13)]([paper link](https://arxiv.org/abs/1908.07919)) - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) + - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) + - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_ssld_pretrained.tar) - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) diff --git a/docs/zh_CN/models/HRNet.md b/docs/zh_CN/models/HRNet.md index f8448226cc8f4576d4140d02b08979b603599f09..3c50a802412296ca763b39414b2c447c6d5edca2 100644 --- a/docs/zh_CN/models/HRNet.md +++ b/docs/zh_CN/models/HRNet.md @@ -27,6 +27,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络, | HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 | | HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 | | HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 | +| HRNet_W48_C_ssld | 0.836 | 0.968 | 0.793 | 0.945 | 34.580 | 77.470 | | HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 | @@ -41,6 +42,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络, | HRNet_W40_C | 224 | 256 | 10.739 | | HRNet_W44_C | 224 | 256 | 11.497 | | HRNet_W48_C | 224 | 256 | 12.165 | +| HRNet_W48_C_ssld | 224 | 256 | 12.165 | | HRNet_W64_C | 224 | 256 | 15.003 | @@ -57,4 +59,5 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络, | HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 | | HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 | | HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 | +| HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 | | HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 | diff --git a/docs/zh_CN/models/ResNet_and_vd.md b/docs/zh_CN/models/ResNet_and_vd.md index f8c9aa3e60fb55453148a6c790cd2217151823a3..0b2a0c29ab5041f674210e14199774c8d11d3f9d 100644 --- a/docs/zh_CN/models/ResNet_and_vd.md +++ b/docs/zh_CN/models/ResNet_and_vd.md @@ -32,6 +32,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠 | ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 | | ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 | | ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 | +| ResNet34_vd_ssld | 0.797 | 0.949 | | | 7.390 | 21.820 | | ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 | | ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 | | ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 | @@ -58,6 +59,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠 | ResNet18_vd | 224 | 256 | 1.603 | | ResNet34 | 224 | 256 | 2.272 | | ResNet34_vd | 224 | 256 | 2.343 | +| ResNet34_vd_ssld | 224 | 256 | 2.343 | | ResNet50 | 224 | 256 | 2.939 | | ResNet50_vc | 224 | 256 | 3.041 | | ResNet50_vd | 224 | 256 | 3.165 | @@ -79,6 +81,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠 | ResNet18_vd | 224 | 256 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 | | ResNet34 | 224 | 256 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 | | ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 | +| ResNet34_vd_ssld | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 | | ResNet50 | 224 | 256 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 | | ResNet50_vc | 224 | 256 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 | | ResNet50_vd | 224 | 256 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 | diff --git a/docs/zh_CN/models/models_intro.md b/docs/zh_CN/models/models_intro.md index 514cbdace29a062a4fac3e3685dfdc05082c97b6..eb8c723d84a626eb06397e2d7cefd0ab010637bc 100644 --- a/docs/zh_CN/models/models_intro.md +++ b/docs/zh_CN/models/models_intro.md @@ -45,6 +45,7 @@ python tools/infer/predict.py \ - [ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar) - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar) + - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar) - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) - [ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) @@ -149,11 +150,13 @@ python tools/infer/predict.py \ - HRNet系列 - HRNet系列[[13](#ref13)]([论文地址](https://arxiv.org/abs/1908.07919)) - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) + - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) + - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_ssld_pretrained.tar) - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar)