diff --git a/ppcls/arch/backbone/model_zoo/micronet.py b/ppcls/arch/backbone/model_zoo/micronet.py index 42503ed8a286be1df1b4345018947911251d4f6a..24f6ca1d2c0c4b68fe8607b4485c16463379d3a1 100644 --- a/ppcls/arch/backbone/model_zoo/micronet.py +++ b/ppcls/arch/backbone/model_zoo/micronet.py @@ -204,7 +204,6 @@ class GroupConv(nn.Layer): self.inp = inp self.oup = oup self.groups = groups - # print('inp: %d, oup:%d, g:%d' % (inp, oup, self.groups[0])) self.conv = nn.Sequential( nn.Conv2D( inp, oup, 1, groups=self.groups[0], bias_attr=False), @@ -320,8 +319,6 @@ class DYShiftMax(nn.Layer): squeeze = _make_divisible(inp // reduction, 4) if squeeze < 4: squeeze = 4 - # print('reduction: {}, squeeze: {}/{}'.format(reduction, inp, squeeze)) - # print('init-a: {}, init-b: {}'.format(init_a, init_b)) self.fc = nn.Sequential( nn.Linear(inp, squeeze), @@ -331,7 +328,6 @@ class DYShiftMax(nn.Layer): self.g = g[1] if self.g != 1 and expansion: self.g = inp // self.g - # print('group shuffle: {}, divide group: {}'.format(self.g, expansion)) self.gc = inp // self.g index = paddle.to_tensor(list(range(inp))).reshape([1, inp, 1, 1]) index = index.reshape([1, self.g, self.gc, 1, 1]) @@ -391,8 +387,6 @@ class DYMicroBlock(nn.Layer): activation_cfg=None): super().__init__() - # print(dy) - self.identity = stride == 1 and inp == oup y1, y2, y3 = dy