Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a7a45dd1
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a7a45dd1
编写于
9月 10, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update update_history
上级
cc1e805e
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
30 addition
and
22 deletion
+30
-22
README.md
README.md
+23
-22
docs/en/update_history_en.md
docs/en/update_history_en.md
+4
-0
docs/zh_CN/update_history.md
docs/zh_CN/update_history.md
+3
-0
未找到文件。
README.md
浏览文件 @
a7a45dd1
...
@@ -7,7 +7,8 @@
...
@@ -7,7 +7,8 @@
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新**
**近期更新**
-
2020.07.14 添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%;添加Fix_ResNet50_vd_ssld_v2模型,,在ImageNet上Top-1 Acc可达84.0%。
-
2020.09.07 添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
-
2020.07.14 添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%;添加Fix_ResNet50_vd_ssld_v2模型,在ImageNet上Top-1 Acc可达84.0%。
-
2020.06.17 添加英文文档。
-
2020.06.17 添加英文文档。
-
2020.06.12 添加对windows和CPU环境的训练与评估支持。
-
2020.06.12 添加对windows和CPU环境的训练与评估支持。
-
2020.05.17 添加混合精度训练,基于ResNet50模型,精度几乎无损的情况下,训练时间可以减少约40%。
-
2020.05.17 添加混合精度训练,基于ResNet50模型,精度几乎无损的情况下,训练时间可以减少约40%。
...
@@ -122,30 +123,30 @@ SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多
...
@@ -122,30 +123,30 @@ SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | Flops(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | Flops(G) | Params(M) | 下载地址 |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| Res2Net50_26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar
)
|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar
)
|
| Res2Net50_vd_26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar
)
|
| Res2Net50_14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
|
| Res2Net101_vd_26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
|
| Res2Net101_vd_
<br>
26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
|
| Res2Net200_vd_26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
|
| Res2Net200_vd_
<br>
26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
|
| Res2Net200_vd_26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar
)
|
| ResNeXt50_32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar
)
|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar
)
|
| ResNeXt50_vd_32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar
)
|
| ResNeXt50_64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
|
| ResNeXt50_vd_64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar
)
|
| ResNeXt101_32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar
)
|
| ResNeXt101_vd_32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar
)
|
| ResNeXt101_64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
|
| ResNeXt101_vd_64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
|
| ResNeXt152_32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar
)
|
| ResNeXt152_vd_32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar
)
|
| ResNeXt152_64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar
)
|
| ResNeXt152_vd_64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar
)
|
| SE_ResNeXt50_32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
|
| SE_ResNeXt50_vd_32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar
)
|
| SE_ResNeXt101_32x4d | 0.7912 | 0.9420 | 18.82604 | 25.31814 | 15.02 | 46.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7912 | 0.9420 | 18.82604 | 25.31814 | 15.02 | 46.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
|
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
)
|
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
)
|
...
...
docs/en/update_history_en.md
浏览文件 @
a7a45dd1
# Release Notes
# Release Notes
*
2020.09.07
*
Add
`HRNet_W18_C_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 81.16%.
*
Add
`MobileNetV3_small_x0_35_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 55.55%.
*
2020.07.14
*
2020.07.14
*
Add
`Res2Net200_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 85.13%.
*
Add
`Res2Net200_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 85.13%.
*
Add
`Fix_ResNet50_vd_ssld_v2`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.00%.
*
Add
`Fix_ResNet50_vd_ssld_v2`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.00%.
...
...
docs/zh_CN/update_history.md
浏览文件 @
a7a45dd1
# 更新日志
# 更新日志
*
2020.09.07
*
添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
*
2020.07.14
*
2020.07.14
*
添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%。
*
添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%。
*
添加Fix_ResNet50_vd_ssld_v2模型,,在ImageNet上Top-1 Acc可达84.0%。
*
添加Fix_ResNet50_vd_ssld_v2模型,,在ImageNet上Top-1 Acc可达84.0%。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录