Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a77ce6ed
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a77ce6ed
编写于
12月 30, 2022
作者:
weixin_46524038
提交者:
cuicheng01
1月 19, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update latency
上级
ccdafe32
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
167 addition
and
167 deletion
+167
-167
docs/zh_CN/models/ImageNet1k/README.md
docs/zh_CN/models/ImageNet1k/README.md
+167
-167
未找到文件。
docs/zh_CN/models/ImageNet1k/README.md
浏览文件 @
a77ce6ed
...
...
@@ -93,8 +93,8 @@
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 3.59 | 6.35 | 9.50 | 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar
)
|
| Res2Net101_vd_
<br>
26w_4s_ssld | 0.839 | 0.806 | 0.033 |
6.34 | 11.02 | 16.13
| 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 1
1.45 | 19.77 | 28.81
| 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar
)
|
| Res2Net101_vd_
<br>
26w_4s_ssld | 0.839 | 0.806 | 0.033 |
5.96 | 10.56 | 15.20
| 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 1
0.79 | 19.48 | 27.95
| 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar
)
|
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 6.66 | 8.94 | 11.95 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar
)
|
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 11.07 | 17.06 | 27.28 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar
)
|
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 17.11 | 26.87 | 43.24 | 29.00 | 129.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar
)
|
...
...
@@ -142,9 +142,9 @@ PP-HGNet 系列模型的精度、速度指标如下表所示,更多关于该
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| PPHGNet_tiny | 0.7983 | 0.9504 | 1.7
7 | - | -
| 4.54 | 14.75 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar
)
|
| PPHGNet_tiny | 0.7983 | 0.9504 | 1.7
2 | 3.40 | 5.29
| 4.54 | 14.75 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar
)
|
| PPHGNet_tiny_ssld | 0.8195 | 0.9612 | 1.77 | - | - | 4.54 | 14.75 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar
)
|
| PPHGNet_small | 0.8151 | 0.9582 | 2.
52 | - | -
| 8.53 | 24.38 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar
)
|
| PPHGNet_small | 0.8151 | 0.9582 | 2.
46 | 5.12 | 8.77
| 8.53 | 24.38 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar
)
|
| PPHGNet_small_ssld | 0.8382 | 0.9681 | 2.52 | - | - | 8.53 | 24.38 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar
)
|
| PPHGNet_base_ssld | 0.8500 | 0.9735 | 5.97 | - | - | 25.14 | 71.62 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_base_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_base_ssld_infer.tar
)
|
...
...
@@ -156,19 +156,19 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ResNet18 | 0.7098 | 0.8992 | 1.
22 | 2.19 | 3.63
| 1.83 | 11.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.
26 | 2.28 | 3.89
| 2.07 | 11.72 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar
)
|
| ResNet18 | 0.7098 | 0.8992 | 1.
08 | 1.44 | 2.40
| 1.83 | 11.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.
11 | 1.52 | 2.60
| 2.07 | 11.72 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar
)
|
| ResNet34 | 0.7457 | 0.9214 | 1.97 | 3.25 | 5.70 | 3.68 | 21.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_infer.tar
)
|
| ResNet34_vd | 0.7598 | 0.9298 |
2.00 | 3.28 | 5.84
| 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 |
2.00 | 3.28 | 5.84
| 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar
)
|
| ResNet50 | 0.7650 | 0.9300 | 2.
54 | 4.79 | 7.40
| 4.11 | 25.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar
)
|
| ResNet34_vd | 0.7598 | 0.9298 |
1.83 | 2.41 | 4.23
| 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 |
1.87 | 2.49 | 4.41
| 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar
)
|
| ResNet50 | 0.7650 | 0.9300 | 2.
19 | 3.77 | 6.22
| 4.11 | 25.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar
)
|
| ResNet50_vc | 0.7835 | 0.9403 | 2.57 | 4.83 | 7.52 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vc_infer.tar
)
|
| ResNet50_vd | 0.7912 | 0.9444 | 2.
60 | 4.86 | 7.63
| 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar
)
|
| ResNet50_vd | 0.7912 | 0.9444 | 2.
23 | 3.92 | 6.46
| 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar
)
|
| ResNet101 | 0.7756 | 0.9364 | 4.37 | 8.18 | 12.38 | 7.83 | 44.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_infer.tar
)
|
| ResNet101_vd | 0.8017 | 0.9497 | 4.
43 | 8.25 | 12.60
| 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar
)
|
| ResNet152 | 0.7826 | 0.9396 |
6.05 | 11.41 | 17.33
| 11.56 | 60.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar
)
|
| ResNet152_vd | 0.8059 | 0.9530 | 6.11 |
11.51 | 17.59
| 11.80 | 60.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar
)
|
| ResNet200_vd | 0.8093 | 0.9533 | 7.
70 | 14.57 | 22.16
| 15.30 | 74.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar
)
|
| ResNet101_vd | 0.8017 | 0.9497 | 4.
04 | 6.84 | 11.44
| 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar
)
|
| ResNet152 | 0.7826 | 0.9396 |
5.70 | 9.58 | 16.16
| 11.56 | 60.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar
)
|
| ResNet152_vd | 0.8059 | 0.9530 | 6.11 |
9.75 | 16.40
| 11.80 | 60.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar
)
|
| ResNet200_vd | 0.8093 | 0.9533 | 7.
32 | 12.45 | 21.10
| 15.30 | 74.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar
)
|
| ResNet50_vd_
<br>
ssld | 0.8300 | 0.9640 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar
)
|
| ResNet101_vd_
<br>
ssld | 0.8373 | 0.9669 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar
)
|
...
...
@@ -181,18 +181,18 @@ ResNeXt 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 |
5.07 | 8.49 | 12.02
| 4.26 | 25.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 |
5.29 | 8.68 | 12.33
| 4.50 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 |
9.39 | 13.97 | 20.56
| 8.02 | 45.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 |
9.75 | 14.14 | 20.84
| 8.26 | 45.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 |
11.34 | 16.78 | 22.80
| 8.01 | 44.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 |
11.36 | 17.01 | 23.07
| 8.25 | 44.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 |
21.57 | 28.08 | 39.4
9 | 15.52 | 83.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 |
21.57 | 28.22 | 39.70
| 15.76 | 83.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 |
17.14 | 25.11 | 33.79
| 11.76 | 60.15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 |
16.99 | 25.29 | 33.85
| 12.01 | 60.17 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 |
33.07 | 42.05 | 59.13
| 23.03 | 115.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 |
33.30 | 42.41 | 59.42
| 23.27 | 115.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar
)
|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 |
2.42 | 8.42 | 11.54
| 4.26 | 25.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 |
2.50 | 8.62 | 11.90
| 4.50 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 |
3.62 | 10.24 | 20.93
| 8.02 | 45.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 |
3.68 | 10.30 | 21.20
| 8.26 | 45.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 |
4.81 | 17.60 | 22.98
| 8.01 | 44.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 |
4.85 | 17.50 | 23.11
| 8.25 | 44.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 |
7.12 | 30.14 | 41.7
9 | 15.52 | 83.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 |
7.34 | 30.30 | 41.79
| 15.76 | 83.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 |
7.09 | 27.16 | 34.32
| 11.76 | 60.15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 |
7.12 | 26.83 | 34.48
| 12.01 | 60.17 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 |
10.88 | 30.14 | 62.60
| 23.03 | 115.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 |
10.58 | 30.30 | 62.94
| 23.27 | 115.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar
)
|
<a
name=
"Res2Net"
></a>
...
...
@@ -202,9 +202,9 @@ Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 | 3.
52 | 6.23 | 9.30
| 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 | 3.
59 | 6.35 | 9.50
| 4.52 | 25.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 | 4.
39 | 7.21 | 10.38
| 4.20 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar
)
|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 | 3.
31 | 5.65 | 8.33
| 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 | 3.
34 | 5.79 | 8.63
| 4.52 | 25.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 | 4.
13 | 6.56 | 9.45
| 4.20 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar
)
|
| Res2Net101_vd_
<br>
26w_4s | 0.8064 | 0.9522 | 6.34 | 11.02 | 16.13 | 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s | 0.8121 | 0.9571 | 11.45 | 19.77 | 28.81 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.8513 | 0.9742 | 11.45 | 19.77 | 28.81 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar
)
|
...
...
@@ -217,13 +217,13 @@ SENet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.
48 | 2.70 | 4.3
2 | 2.07 | 11.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.
42 | 3.69 | 6.2
9 | 3.93 | 22.00 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 |
3.11 | 5.99 | 9.34
| 4.36 | 28.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 |
6.39 | 11.01 | 14.94
| 4.27 | 27.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 |
7.04 | 11.57 | 16.01
| 5.64 | 27.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7939 | 0.9443 |
13.31 | 21.85 | 28.7
7 | 8.03 | 49.09 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar
)
|
| SENet154_vd | 0.8140 | 0.9548 |
34.83 | 51.22 | 69.74
| 24.45 | 122.03 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.
32 | 1.77 | 2.9
2 | 2.07 | 11.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.
19 | 3.00 | 5.0
9 | 3.93 | 22.00 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 |
2.72 | 5.07 | 8.12
| 4.36 | 28.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 |
2.95 | 10.77 | 14.51
| 4.27 | 27.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 |
3.06 | 10.91 | 15.53
| 5.64 | 27.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7939 | 0.9443 |
5.78 | 21.04 | 28.6
7 | 8.03 | 49.09 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar
)
|
| SENet154_vd | 0.8140 | 0.9548 |
12.57 | 33.64 | 72.71
| 24.45 | 122.03 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar
)
|
<a
name=
"DPN"
></a>
...
...
@@ -233,11 +233,11 @@ DPN 系列模型的精度、速度指标如下表所示,更多关于该系列
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------|
| DPN68 | 0.7678 | 0.9343 |
8.18 | 11.40 | 14.82
| 2.35 | 12.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar
)
|
| DPN92 | 0.7985 | 0.9480 |
12.48 | 20.04 | 25.10
| 6.54 | 37.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar
)
|
| DPN98 | 0.8059 | 0.9510 |
14.70 | 25.55 | 35.12
| 11.728 | 61.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar
)
|
| DPN107 | 0.8089 | 0.9532 |
19.46 | 35.62 | 50.2
2 | 18.38 | 87.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar
)
|
| DPN131 | 0.8070 | 0.9514 |
19.64 | 34.60 | 47.4
2 | 16.09 | 79.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar
)
|
| DPN68 | 0.7678 | 0.9343 |
2.82 | 10.90 | 14.45
| 2.35 | 12.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar
)
|
| DPN92 | 0.7985 | 0.9480 |
4.64 | 11.20 | 20.01
| 6.54 | 37.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar
)
|
| DPN98 | 0.8059 | 0.9510 |
6.15 | 25.22 | 35.69
| 11.728 | 61.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar
)
|
| DPN107 | 0.8089 | 0.9532 |
8.39 | 34.44 | 52.1
2 | 18.38 | 87.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar
)
|
| DPN131 | 0.8070 | 0.9514 |
8.26 | 33.96 | 48.6
2 | 16.09 | 79.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar
)
|
<a
name=
"DenseNet"
></a>
...
...
@@ -247,11 +247,11 @@ DenseNet 系列模型的精度、速度指标如下表所示,更多关于该
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------|
| DenseNet121 | 0.7566 | 0.9258 | 3.
40 | 6.94 | 9.17
| 2.87 | 8.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar
)
|
| DenseNet161 | 0.7857 | 0.9414 |
7.06 | 14.37 | 19.55
| 7.79 | 28.90 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar
)
|
| DenseNet169 | 0.7681 | 0.9331 |
5.00 | 10.29 | 12.84
| 3.40 | 14.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar
)
|
| DenseNet201 | 0.7763 | 0.9366 | 6.
38 | 13.72 | 17.17
| 4.34 | 20.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar
)
|
| DenseNet264 | 0.7796 | 0.9385 | 9.
34 | 20.95 | 25.41
| 5.82 | 33.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar
)
|
| DenseNet121 | 0.7566 | 0.9258 | 3.
22 | 6.25 | 8.20
| 2.87 | 8.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar
)
|
| DenseNet161 | 0.7857 | 0.9414 |
6.83 | 13.40 | 18.34
| 7.79 | 28.90 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar
)
|
| DenseNet169 | 0.7681 | 0.9331 |
4.81 | 9.53 | 11.93
| 3.40 | 14.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar
)
|
| DenseNet201 | 0.7763 | 0.9366 | 6.
15 | 12.70 | 15.93
| 4.34 | 20.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar
)
|
| DenseNet264 | 0.7796 | 0.9385 | 9.
05 | 19.57 | 23.84
| 5.82 | 33.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar
)
|
<a
name=
"HRNet"
></a>
...
...
@@ -261,15 +261,15 @@ HRNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692 | 0.9339 | 6.
66 | 8.94 | 11.95
| 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar
)
|
| HRNet_W18_C | 0.7692 | 0.9339 | 6.
33 | 8.12 | 10.91
| 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar
)
|
| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 6.66 | 8.94 | 11.95 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar
)
|
| HRNet_W30_C | 0.7804 | 0.9402 | 8.
61 | 11.40 | 15.23
| 8.15 | 37.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar
)
|
| HRNet_W32_C | 0.7828 | 0.9424 | 8.
54 | 11.58 | 15.57
| 8.97 | 41.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar
)
|
| HRNet_W40_C | 0.7877 | 0.9447 | 9.
83 | 15.02 | 20.92
| 12.74 | 57.64 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 10.
62 | 16.18 | 25.92
| 14.94 | 67.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 1
1.07 | 17.06 | 27.28
| 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar
)
|
| HRNet_W30_C | 0.7804 | 0.9402 | 8.
34 | 10.65 | 13.95
| 8.15 | 37.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar
)
|
| HRNet_W32_C | 0.7828 | 0.9424 | 8.
03 | 10.46 | 14.11
| 8.97 | 41.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar
)
|
| HRNet_W40_C | 0.7877 | 0.9447 | 9.
64 | 14.27 | 19.54
| 12.74 | 57.64 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 10.
54 | 15.41 | 24.50
| 14.94 | 67.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 1
0.81 | 15.67 | 15.53
| 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar
)
|
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 11.07 | 17.06 | 27.28 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 13.
82 | 21.15 | 35.51
| 28.97 | 128.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 13.
12 | 19.49 | 33.80
| 28.97 | 128.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar
)
|
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 17.11 | 26.87 | 43.24 | 29.00 | 129.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar
)
|
<a
name=
"Inception"
></a>
...
...
@@ -280,14 +280,14 @@ Inception 系列模型的精度、速度指标如下表所示,更多关于该
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| GoogLeNet | 0.7070 | 0.8966 | 1.
41 | 3.25 | 5.00
| 1.44 | 11.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar
)
|
| Xception41 | 0.7930 | 0.9453 | 3.
58 | 8.76 | 16.61
| 8.57 | 23.02 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar
)
|
| Xception41_deeplab | 0.7955 | 0.9438 | 3.
81 | 9.16 | 17.20
| 9.28 | 27.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar
)
|
| Xception65 | 0.8100 | 0.9549 | 5.
45 | 12.78 | 24.53
| 13.25 | 36.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar
)
|
| Xception65_deeplab | 0.8032 | 0.9449 |
5.65 | 13.08 | 24.61
| 13.96 | 40.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar
)
|
| Xception71 | 0.8111 | 0.9545 |
6.19 | 15.34 | 29.21
| 16.21 | 37.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar
)
|
| InceptionV3 | 0.7914 | 0.9459 |
4.78 | 8.53 | 12.28
| 5.73 | 23.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar
)
|
| InceptionV4 | 0.8077 | 0.9526 |
8.93 | 15.17 | 21.56
| 12.29 | 42.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar
)
|
| GoogLeNet | 0.7070 | 0.8966 | 1.
26 | 2.84 | 3.61
| 1.44 | 11.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar
)
|
| Xception41 | 0.7930 | 0.9453 | 3.
20 | 7.78 | 14.83
| 8.57 | 23.02 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar
)
|
| Xception41_deeplab | 0.7955 | 0.9438 | 3.
34 | 8.22 | 15.54
| 9.28 | 27.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar
)
|
| Xception65 | 0.8100 | 0.9549 | 5.
01 | 11.66 | 22.49
| 13.25 | 36.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar
)
|
| Xception65_deeplab | 0.8032 | 0.9449 |
4.98 | 11.90 | 22.94
| 13.96 | 40.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar
)
|
| Xception71 | 0.8111 | 0.9545 |
5.75 | 14.11 | 27.37
| 16.21 | 37.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar
)
|
| InceptionV3 | 0.7914 | 0.9459 |
3.92 | 5.98 | 9.57
| 5.73 | 23.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar
)
|
| InceptionV4 | 0.8077 | 0.9526 |
7.09 | 10.95 | 18.37
| 12.29 | 42.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar
)
|
<a
name=
"EfficientNet"
></a>
...
...
@@ -297,14 +297,14 @@ EfficientNet 系列模型的精度、速度指标如下表所示,更多关于
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| EfficientNetB0 | 0.7738 | 0.9331 | 1.
96 | 3.71 | 5.56
| 0.40 | 5.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar
)
|
| EfficientNetB1 | 0.7915 | 0.9441 | 2.
88 | 5.40 | 7.63
| 0.71 | 7.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar
)
|
| EfficientNetB2 | 0.7985 | 0.9474 |
3.26 | 6.20 | 9.17
| 1.02 | 9.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar
)
|
| EfficientNetB3 | 0.8115 | 0.9541 |
4.52 | 8.85 | 13.5
4 | 1.88 | 12.324 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar
)
|
| EfficientNetB4 | 0.8285 | 0.9623 |
6.78 | 15.47 | 24.95
| 4.51 | 19.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar
)
|
| EfficientNetB5 | 0.8362 | 0.9672 |
10.97 | 27.24 | 45.93
| 10.51 | 30.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar
)
|
| EfficientNetB6 | 0.8400 | 0.9688 | 1
7.09 | 43.32 | 76.90
| 19.47 | 43.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar
)
|
| EfficientNetB7 | 0.8430 | 0.9689 | 2
5.91 | 71.23 | 128.20
| 38.45 | 66.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar
)
|
| EfficientNetB0 | 0.7738 | 0.9331 | 1.
58 | 2.56 | 3.70
| 0.40 | 5.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar
)
|
| EfficientNetB1 | 0.7915 | 0.9441 | 2.
29 | 3.92 | 5.50
| 0.71 | 7.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar
)
|
| EfficientNetB2 | 0.7985 | 0.9474 |
2.52 | 4.50 | 6.78
| 1.02 | 9.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar
)
|
| EfficientNetB3 | 0.8115 | 0.9541 |
3.44 | 6.53 | 10.4
4 | 1.88 | 12.324 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar
)
|
| EfficientNetB4 | 0.8285 | 0.9623 |
5.35 | 11.69 | 19.97
| 4.51 | 19.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar
)
|
| EfficientNetB5 | 0.8362 | 0.9672 |
8.52 | 21.94 | 38.37
| 10.51 | 30.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar
)
|
| EfficientNetB6 | 0.8400 | 0.9688 | 1
3.49 | 37.00 | 67.17
| 19.47 | 43.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar
)
|
| EfficientNetB7 | 0.8430 | 0.9689 | 2
1.91 | 62.69 | 116.07
| 38.45 | 66.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar
)
|
| EfficientNetB0_
<br>
small | 0.7580 | 0.9258 | 1.24 | 2.59 | 3.92 | 0.40 | 4.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar
)
|
...
...
@@ -316,10 +316,10 @@ ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_
<br>
32x8d_wsl | 0.8255 | 0.9674 | 1
3.55 | 23.39 | 36.18
| 16.48 | 88.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x16d_wsl | 0.8424 | 0.9726 | 2
1.96 | 38.35 | 63.29
| 36.26 | 194.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x32d_wsl | 0.8497 | 0.9759 |
37.28 | 76.50 | 121.56
| 87.28 | 469.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x48d_wsl | 0.8537 | 0.9769 |
55.07 | 124.39 | 205.01
| 153.57 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x8d_wsl | 0.8255 | 0.9674 | 1
5.85 | 23.61 | 35.60
| 16.48 | 88.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x16d_wsl | 0.8424 | 0.9726 | 2
0.58 | 37.38 | 66.45
| 36.26 | 194.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x32d_wsl | 0.8497 | 0.9759 |
49.87 | 86.16 | 120.14
| 87.28 | 469.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x48d_wsl | 0.8537 | 0.9769 |
69.81 | 121.22 | 205.55
| 153.57 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar
)
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 0.8626 | 0.9797 | 55.01 | 122.63 | 204.66 | 313.41 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Fix_ResNeXt101_32x48d_wsl_infer.tar
)
|
<a
name=
"ResNeSt"
></a>
...
...
@@ -330,9 +330,9 @@ ResNeSt 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8061 | 0.9527 | 2.
73 | 5.33 | 8.24
| 4.36 | 26.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar
)
|
| ResNeSt50 | 0.8102 | 0.9546 |
7.36 | 10.23 | 13.84
| 5.40 | 27.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar
)
|
| ResNeSt101 | 0.8279 | 0.9642 |
| |
| 10.25 | 48.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt101_infer.tar
)
|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8061 | 0.9527 | 2.
42 | 4.34 | 6.96
| 4.36 | 26.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar
)
|
| ResNeSt50 | 0.8102 | 0.9546 |
13.08 | 16.38 | 23.18
| 5.40 | 27.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar
)
|
| ResNeSt101 | 0.8279 | 0.9642 |
19.16 | 22.62 | 11.24
| 10.25 | 48.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt101_infer.tar
)
|
| ResNeSt200 | 0.8418 | 0.9698 | | | | 17.50 | 70.41 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt200_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt200_infer.tar
)
|
| ResNeSt269 | 0.8444 |0.9698 | | | | 22.54 | 111.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt269_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt269_infer.tar
)
|
...
...
@@ -344,7 +344,7 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RegNetX_200MF | 0.680 | 0.8842 |
| |
| 0.20 | 2.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_200MF_infer.tar
)
|
| RegNetX_200MF | 0.680 | 0.8842 |
1.00 | 1.29 | 4.12
| 0.20 | 2.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_200MF_infer.tar
)
|
| RegNetX_400MF | 0.723 | 0.9078 | | | | 0.40 | 5.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_400MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_400MF_infer.tar
)
|
| RegNetX_600MF | 0.737 | 0.9198 | | | | 0.61 | 6.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_600MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_600MF_infer.tar
)
|
| RegNetX_800MF | 0.751 | 0.9250 | | | | 0.81 | 7.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_800MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_800MF_infer.tar
)
|
...
...
@@ -355,7 +355,7 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| RegNetX_8GF | 0.793 | 0.9464 | | | | 8.02 | 39.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_8GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_8GF_infer.tar
)
|
| RegNetX_12GF | 0.797 | 0.9501 | | | | 12.13 | 46.20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_12GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_12GF_infer.tar
)
|
| RegNetX_16GF | 0.801 | 0.9505 | | | | 15.99 | 54.39 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_16GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_16GF_infer.tar
)
|
| RegNetX_32GF | 0.803 | 0.9526 |
| |
| 32.33 | 130.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_32GF_infer.tar
)
|
| RegNetX_32GF | 0.803 | 0.9526 |
13.67 | 28.08 | 51.04
| 32.33 | 130.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_32GF_infer.tar
)
|
<a
name=
"RepVGG"
></a>
...
...
@@ -366,17 +366,17 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RepVGG_A0 | 0.7131 | 0.9016 |
| |
| 1.36 | 8.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar
)
|
| RepVGG_A1 | 0.7380 | 0.9146 |
| |
| 2.37 | 12.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar
)
|
| RepVGG_A2 | 0.7571 | 0.9264 |
| |
| 5.12 | 25.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar
)
|
| RepVGG_B0 | 0.7450 | 0.9213 |
| |
| 3.06 | 14.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar
)
|
| RepVGG_B1 | 0.7773 | 0.9385 |
| |
| 11.82 | 51.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar
)
|
| RepVGG_B2 | 0.7813 | 0.9410 |
| |
| 18.38 | 80.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar
)
|
| RepVGG_B1g2 | 0.7732 | 0.9359 |
| |
| 8.82 | 41.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 |
| |
| 7.31 | 36.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar
)
|
| RepVGG_A0 | 0.7131 | 0.9016 |
1.38 | 1.85 | 2.81
| 1.36 | 8.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar
)
|
| RepVGG_A1 | 0.7380 | 0.9146 |
1.68 | 2.33 | 3.70
| 2.37 | 12.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar
)
|
| RepVGG_A2 | 0.7571 | 0.9264 |
2.31 | 4.46 | 6.53
| 5.12 | 25.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar
)
|
| RepVGG_B0 | 0.7450 | 0.9213 |
2.00 | 2.87 | 4.67
| 3.06 | 14.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar
)
|
| RepVGG_B1 | 0.7773 | 0.9385 |
3.56 | 7.64 | 13.94
| 11.82 | 51.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar
)
|
| RepVGG_B2 | 0.7813 | 0.9410 |
4.45 | 9.79 | 19.13
| 18.38 | 80.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar
)
|
| RepVGG_B1g2 | 0.7732 | 0.9359 |
4.18 | 6.93 | 11.99
| 8.82 | 41.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 |
4.72 | 7.23 | 11.14
| 7.31 | 36.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar
)
|
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | 11.34 | 55.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar
)
|
| RepVGG_B3 | 0.8031 | 0.9517 | | | | 29.16 | 123.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3_infer.tar
)
|
| RepVGG_B3g4 | 0.8005 | 0.9502 |
| |
| 17.89 | 83.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar
)
|
| RepVGG_B3g4 | 0.8005 | 0.9502 |
4.28 | 8.22 | 14.68
| 17.89 | 83.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar
)
|
| RepVGG_D2se | 0.8339 | 0.9665 | | | | 36.54 | 133.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_D2se_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_D2se_infer.tar
)
|
<a
name=
"MixNet"
></a>
...
...
@@ -387,9 +387,9 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| -------- | --------- | --------- | ---------------- | ---------------- | ----------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MixNet_S | 0.7628 | 0.9299 |
2.31 | 3.63 | 5.20
| 252.977 | 4.167 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar
)
|
| MixNet_M | 0.7767 | 0.9364 | 2.
84 | 4.60 | 6.62
| 357.119 | 5.065 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar
)
|
| MixNet_L | 0.7860 | 0.9437 | 3.
16 | 5.55 | 8.03
| 579.017 | 7.384 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar
)
|
| MixNet_S | 0.7628 | 0.9299 |
1.83 | 2.59 | 3.85
| 252.977 | 4.167 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar
)
|
| MixNet_M | 0.7767 | 0.9364 | 2.
45 | 3.38 | 5.06
| 357.119 | 5.065 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar
)
|
| MixNet_L | 0.7860 | 0.9437 | 3.
39 | 4.19 | 6.29
| 579.017 | 7.384 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar
)
|
<a
name=
"ReXNet"
></a>
...
...
@@ -399,11 +399,11 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746 | 0.9370 | 3.
08 | 4.15 | 5.49
| 0.415 | 4.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar
)
|
| ReXNet_1_3 | 0.7913 | 0.9464 | 3.
54 | 4.87 | 6.54
| 0.68 | 7.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar
)
|
| ReXNet_1_5 | 0.8006 | 0.9512 | 3.
68 | 5.31 | 7.38
| 0.90 | 9.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar
)
|
| ReXNet_2_0 | 0.8122 | 0.9536 |
4.30 | 6.54 | 9.19
| 1.56 | 16.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar
)
|
| ReXNet_3_0 | 0.8209 | 0.9612 |
5.74 | 9.49 | 13.6
2 | 3.44 | 34.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar
)
|
| ReXNet_1_0 | 0.7746 | 0.9370 | 3.
10 | 3.29 | 3.50
| 0.415 | 4.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar
)
|
| ReXNet_1_3 | 0.7913 | 0.9464 | 3.
38 | 3.45 | 4.37
| 0.68 | 7.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar
)
|
| ReXNet_1_5 | 0.8006 | 0.9512 | 3.
20 | 3.57 | 6.50
| 0.90 | 9.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar
)
|
| ReXNet_2_0 | 0.8122 | 0.9536 |
3.32 | 4.45 | 6.50
| 1.56 | 16.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar
)
|
| ReXNet_3_0 | 0.8209 | 0.9612 |
3.83 | 6.81 | 10.4
2 | 3.44 | 34.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar
)
|
<a
name=
"HarDNet"
></a>
...
...
@@ -413,10 +413,10 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133 |0.8998 | 1.
40 | 2.30 | 3.33
| 0.44 | 3.51 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar
)
|
| HarDNet68_ds |0.7362 | 0.9152 |
2.26 | 3.34 | 5.06
| 0.79 | 4.20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar
)
|
| HarDNet68| 0.7546 | 0.9265 |
3.58 | 8.53 | 11.58
| 4.26 | 17.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar
)
|
| HarDNet85 | 0.7744 | 0.9355 |
6.24 | 14.85 | 20.57
| 9.09 | 36.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar
)
|
| HarDNet39_ds | 0.7133 |0.8998 | 1.
12 | 1.54 | 2.00
| 0.44 | 3.51 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar
)
|
| HarDNet68_ds |0.7362 | 0.9152 |
1.88 | 2.56 | 3.37
| 0.79 | 4.20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar
)
|
| HarDNet68| 0.7546 | 0.9265 |
2.97 | 4.12 | 6.05
| 4.26 | 17.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar
)
|
| HarDNet85 | 0.7744 | 0.9355 |
4.67 | 7.17 | 10.58
| 9.09 | 36.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar
)
|
<a
name=
"DLA"
></a>
...
...
@@ -426,15 +426,15 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| DLA102 | 0.7893 |0.9452 | 4
.95 | 8.08 | 12.4
0 | 7.19 | 33.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar
)
|
| DLA102x2 |0.7885 | 0.9445 |
19.58 | 23.97 | 31.37
| 9.34 | 41.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar
)
|
| DLA102x| 0.781 | 0.9400 | 11.12 | 1
5.60 | 20.37
| 5.89 | 26.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar
)
|
| DLA169 | 0.7809 | 0.9409 |
7.70 | 12.25 | 18.90
| 11.59 | 53.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar
)
|
| DLA34 | 0.7603 | 0.9298 | 1.
83 | 3.37 | 5.98
| 3.07 | 15.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar
)
|
| DLA46_c |0.6321 | 0.853 |
1.06 | 2.08 | 3.23
| 0.54 | 1.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar
)
|
| DLA60 | 0.7610 | 0.9292 | 2.
78 | 5.36 | 8.29
| 4.26 | 22.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar
)
|
| DLA60x_c | 0.6645 | 0.8754 | 1.
79 | 3.68 | 5.19
| 0.59 | 1.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar
)
|
| DLA60x | 0.7753 | 0.9378 |
5.98 | 9.24 | 12.52
| 3.54 | 17.41 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar
)
|
| DLA102 | 0.7893 |0.9452 | 4
,15 | 6.81 | 11.6
0 | 7.19 | 33.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar
)
|
| DLA102x2 |0.7885 | 0.9445 |
6.40 | 13.39 | 33.51
| 9.34 | 41.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar
)
|
| DLA102x| 0.781 | 0.9400 | 11.12 | 1
6.44 | 20.98
| 5.89 | 26.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar
)
|
| DLA169 | 0.7809 | 0.9409 |
6.45 | 10.79 | 18.31
| 11.59 | 53.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar
)
|
| DLA34 | 0.7603 | 0.9298 | 1.
67 | 2.49 | 4.31
| 3.07 | 15.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar
)
|
| DLA46_c |0.6321 | 0.853 |
0.88 | 1.44 | 1.96
| 0.54 | 1.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar
)
|
| DLA60 | 0.7610 | 0.9292 | 2.
54 | 4.26 | 7.01
| 4.26 | 22.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar
)
|
| DLA60x_c | 0.6645 | 0.8754 | 1.
04 | 1.82 | 3.68
| 0.59 | 1.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar
)
|
| DLA60x | 0.7753 | 0.9378 |
2.66 | 8.44 | 11.95
| 3.54 | 17.41 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar
)
|
<a
name=
"RedNet"
></a>
...
...
@@ -444,11 +444,11 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| RedNet26 | 0.7595 |0.9319 |
4.45 | 15.16 | 29.0
3 | 1.69 | 9.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar
)
|
| RedNet38 |0.7747 | 0.9356 |
6.24 | 21.39 | 41.26
| 2.14 | 12.43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar
)
|
| RedNet50| 0.7833 | 0.9417 |
8.04 | 27.71 | 53.73
| 2.61 | 15.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar
)
|
| RedNet101 | 0.7894 | 0.9436 | 1
3.07 | 44.12 | 83.28
| 4.59 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar
)
|
| RedNet152 | 0.7917 | 0.9440 |
18.66 | 63.27 | 119.48
| 6.57 | 34.14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar
)
|
| RedNet26 | 0.7595 |0.9319 |
5.36 | 17.89 | 31.8
3 | 1.69 | 9.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar
)
|
| RedNet38 |0.7747 | 0.9356 |
7.42 | 25.11 | 45.99
| 2.14 | 12.43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar
)
|
| RedNet50| 0.7833 | 0.9417 |
9.47 | 31.93 | 61.41
| 2.61 | 15.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar
)
|
| RedNet101 | 0.7894 | 0.9436 | 1
4.89 | 51.40 | 98.07
| 4.59 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar
)
|
| RedNet152 | 0.7917 | 0.9440 |
21.41 | 74.07 | 138.91
| 6.57 | 34.14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar
)
|
<a
name=
"ConvNeXt"
></a>
...
...
@@ -473,10 +473,10 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| VAN_B0 | 0.7535 | 0.9299 |
- | - | -
| 0.880 | 4.110 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B0_infer.tar
)
|
| VAN_B1 | 0.8102 | 0.9562 |
- | - | -
| 2.518 | 13.869 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B1_infer.tar
)
|
| VAN_B2 | 0.8280 | 0.9620 |
- | - | -
| 5.032 | 26.592 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B2_infer.tar
)
|
| VAN_B3 | 0.8389 | 0.9668 |
- | - | -
| 8.987 | 44.790 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B3_infer.tar
)
|
| VAN_B0 | 0.7535 | 0.9299 |
9.58 | 10.21 | 10.78
| 0.880 | 4.110 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B0_infer.tar
)
|
| VAN_B1 | 0.8102 | 0.9562 |
8.24 | 8.74 | 9.85
| 2.518 | 13.869 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B1_infer.tar
)
|
| VAN_B2 | 0.8280 | 0.9620 |
17.09 | 18.48 | 19.32
| 5.032 | 26.592 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B2_infer.tar
)
|
| VAN_B3 | 0.8389 | 0.9668 |
32.09 | 33.91 | 36.13
| 8.987 | 44.790 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B3_infer.tar
)
|
<a
name=
"PeleeNet"
></a>
...
...
@@ -486,7 +486,7 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| PeleeNet | 0.7153 | 0.9040 |
- | - | -
| 0.514 | 2.812 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PeleeNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PeleeNet_infer.tar
)
|
| PeleeNet | 0.7153 | 0.9040 |
1.26 | 2.10 | 2.47
| 0.514 | 2.812 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PeleeNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PeleeNet_infer.tar
)
|
<a
name=
"CSPNet"
></a>
...
...
@@ -496,7 +496,7 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| CSPDarkNet53 | 0.7725 | 0.9355 |
- | - | -
| 5.041 | 27.678 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSPDarkNet53_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSPDarkNet53_infer.tar
)
|
| CSPDarkNet53 | 0.7725 | 0.9355 |
2.80 | 5.43 | 9.48
| 5.041 | 27.678 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSPDarkNet53_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSPDarkNet53_infer.tar
)
|
<a
name=
"Others"
></a>
...
...
@@ -506,14 +506,14 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| AlexNet | 0.567 | 0.792 | 0.
81 | 1.50 | 2.33
| 0.71 | 61.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar
)
|
| AlexNet | 0.567 | 0.792 | 0.
64 | 8.88 | 1.21
| 0.71 | 61.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar
)
|
| SqueezeNet1_0 | 0.596 | 0.817 | 0.68 | 1.64 | 2.62 | 0.78 | 1.25 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_0_infer.tar
)
|
| SqueezeNet1_1 | 0.601 | 0.819 | 0.62 | 1.30 | 2.09 | 0.35 | 1.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_1_infer.tar
)
|
| VGG11 | 0.693 | 0.891 | 1.
72 | 4.15 | 7.2
4 | 7.61 | 132.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar
)
|
| VGG13 | 0.700 | 0.894 |
2.02 | 5.28 | 9.54
| 11.31 | 133.05 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar
)
|
| VGG16 | 0.720 | 0.907 | 2.
48 | 6.79 | 12.33
| 15.470 | 138.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar
)
|
| VGG19 | 0.726 | 0.909 | 2.
93 | 8.28 | 15.21
| 19.63 | 143.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar
)
|
| DarkNet53 | 0.780 | 0.941 | 2.
79 | 6.42 | 10.89
| 9.31 | 41.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar
)
|
| VGG11 | 0.693 | 0.891 | 1.
54 | 3.71 | 6.6
4 | 7.61 | 132.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar
)
|
| VGG13 | 0.700 | 0.894 |
1.83 | 4.96 | 9.16
| 11.31 | 133.05 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar
)
|
| VGG16 | 0.720 | 0.907 | 2.
28 | 6.56 | 12.25
| 15.470 | 138.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar
)
|
| VGG19 | 0.726 | 0.909 | 2.
73 | 8.18 | 15.33
| 19.63 | 143.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar
)
|
| DarkNet53 | 0.780 | 0.941 | 2.
40 | 5.51 | 9.56
| 9.31 | 41.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar
)
|
<a
name=
"CNN_lite"
></a>
...
...
@@ -576,18 +576,18 @@ PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<sup>
*
</sup><br>
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNet_x0_25 |0.5186 | 0.7565 |
1.7
4 | 18.25 | 1.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar
)
|
| PPLCNet_x0_35 |0.5809 | 0.8083 |
1.92
| 29.46 | 1.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar
)
|
| PPLCNet_x0_5 |0.6314 | 0.8466 |
2.05
| 47.28 | 1.89 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar
)
|
| PPLCNet_x0_75 |0.6818 | 0.8830 |
2.29
| 98.82 | 2.37 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar
)
|
| PPLCNet_x1_0 |0.7132 | 0.9003 |
2.46
| 160.81 | 2.96 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar
)
|
| PPLCNet_x1_5 |0.7371 | 0.9153 |
3.19
| 341.86 | 4.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar
)
|
| PPLCNet_x2_0 |0.7518 | 0.9227 |
4.27
| 590 | 6.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar
)
|
| PPLCNet_x2_5 |0.7660 | 0.9300 |
5.39
| 906 | 9.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar
)
|
| PPLCNet_x0_25 |0.5186 | 0.7565 |
0.4
4 | 18.25 | 1.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar
)
|
| PPLCNet_x0_35 |0.5809 | 0.8083 |
0.45
| 29.46 | 1.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar
)
|
| PPLCNet_x0_5 |0.6314 | 0.8466 |
0.44
| 47.28 | 1.89 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar
)
|
| PPLCNet_x0_75 |0.6818 | 0.8830 |
0.44
| 98.82 | 2.37 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar
)
|
| PPLCNet_x1_0 |0.7132 | 0.9003 |
0.47
| 160.81 | 2.96 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar
)
|
| PPLCNet_x1_5 |0.7371 | 0.9153 |
0.54
| 341.86 | 4.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar
)
|
| PPLCNet_x2_0 |0.7518 | 0.9227 |
0.64
| 590 | 6.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar
)
|
| PPLCNet_x2_5 |0.7660 | 0.9300 |
0.71
| 906 | 9.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<sup>
**
</sup><br>
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNetV2_base | 77.04 | 93.27 |
4.32
| 604 | 6.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar
)
|
| PPLCNetV2_base | 77.04 | 93.27 |
0.67
| 604 | 6.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar
)
|
*
: 基于 Intel-Xeon-Gold-6148 硬件平台与 PaddlePaddle 推理平台。
...
...
@@ -609,13 +609,13 @@ ViT(Vision Transformer) 系列模型的精度、速度指标如下表所示. 更
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| ViT_small_
<br/>
patch16_224 | 0.7769 | 0.9342 | 3.
71 | 9.05 | 16.72
| 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_224 | 0.8195 | 0.9617 |
6.12 | 14.84 | 28.51
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 | 1
4.15 | 48.38 | 95.06
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 |
4.94 | 13.43 | 24.08
| 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 | 15.5
3 | 49.50 | 94.09
| 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar
)
|
|ViT_large_
<br/>
patch16_384| 0.8513 | 0.9736 | 3
9.51 | 152.46 | 304.06
| 174.70 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar
)
|
|ViT_large_
<br/>
patch32_384| 0.8153 | 0.9608 | 1
1.44 | 36.09 | 70.63
| 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar
)
|
| ViT_small_
<br/>
patch16_224 | 0.7769 | 0.9342 | 3.
81 | 8.65 | 15.80
| 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_224 | 0.8195 | 0.9617 |
5.93 | 15.46 | 27.12
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 | 1
3.78 | 45.59 | 88.65
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 |
5.29 | 12.33 | 22.44
| 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 | 15.5
7 | 49.66 | 91.45
| 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar
)
|
|ViT_large_
<br/>
patch16_384| 0.8513 | 0.9736 | 3
8.67 | 142.57 | 282.87
| 174.70 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar
)
|
|ViT_large_
<br/>
patch32_384| 0.8153 | 0.9608 | 1
2.07 | 34.53 | 65.81
| 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar
)
|
<a
name=
"DeiT"
></a>
...
...
@@ -625,14 +625,14 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| DeiT_tiny_
<br>
patch16_224 | 0.718 | 0.910 | 3.
61 | 3.94 | 6.10
| 1.07 | 5.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
patch16_224 | 0.796 | 0.949 | 3.
61 | 6.24 | 10.49
| 4.24 | 21.97 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_224 | 0.817 | 0.957 |
6.13 | 14.87 | 28.50
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_384 | 0.830 | 0.962 | 1
4.12 | 48.80 | 97.60
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.741 | 0.918 | 3.
51 | 4.05 | 6.03
| 1.08 | 5.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.809 | 0.953 | 3.
70 | 6.20 | 10.53
| 4.26 | 22.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.831 | 0.964 | 6.
17 | 14.94 | 28.58
| 16.93 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.851 | 0.973 | 1
4.12 | 48.76 | 97.09
| 49.43 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
patch16_224 | 0.718 | 0.910 | 3.
87 | 3.58 | 4.63
| 1.07 | 5.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
patch16_224 | 0.796 | 0.949 | 3.
52 | 5.90 | 9.44
| 4.24 | 21.97 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_224 | 0.817 | 0.957 |
5.97 | 15.52 | 27.38
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_384 | 0.830 | 0.962 | 1
3.78 | 45.94 | 89.38
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.741 | 0.918 | 3.
31 | 3.61 | 4.57
| 1.08 | 5.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.809 | 0.953 | 3.
57 | 5.91 | 9.51
| 4.26 | 22.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.831 | 0.964 | 6.
00 | 15.43 | 27.10
| 16.93 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.851 | 0.973 | 1
3.76 | 45.61 | 89.15
| 49.43 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar
)
|
<a
name=
"SwinTransformer"
></a>
...
...
@@ -661,11 +661,11 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| pcpvt_small | 0.8082 | 0.9552 |
7.32
| 10.51 | 15.27 |3.67 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar
)
|
| pcpvt_base | 0.8242 | 0.9619 |
12.20
| 16.22 | 23.16 | 6.44 | 43.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar
)
|
| pcpvt_large | 0.8273 | 0.9650 |
16.47 | 22.90 | 32.73
| 9.50 | 60.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar
)
|
| alt_gvt_small | 0.8140 | 0.9546 |
6.94 | 9.01 | 12.27 |2.81
| 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar
)
|
| alt_gvt_base | 0.8294 | 0.9621 |
9.37 | 15.02 | 24.54
| 8.34 | 56.07 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar
)
|
| pcpvt_small | 0.8082 | 0.9552 |
5.74
| 10.51 | 15.27 |3.67 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar
)
|
| pcpvt_base | 0.8242 | 0.9619 |
8.44
| 16.22 | 23.16 | 6.44 | 43.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar
)
|
| pcpvt_large | 0.8273 | 0.9650 |
9.28 | 18.72 | 31.18
| 9.50 | 60.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar
)
|
| alt_gvt_small | 0.8140 | 0.9546 |
4.93 | | - |10.02
| 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar
)
|
| alt_gvt_base | 0.8294 | 0.9621 |
7.48 | 12.60 | 19.93
| 8.34 | 56.07 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar
)
|
| alt_gvt_large | 0.8331 | 0.9642 | 11.76 | 22.08 | 35.12 | 14.81 | 99.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar
)
|
**注**
:与 Reference 的精度差异源于数据预处理不同。
...
...
@@ -693,12 +693,12 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| PVT_V2_B0 | 0.7052 | 0.9016 |
- | -
| - | 0.53 | 3.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B0_infer.tar
)
|
| PVT_V2_B1 | 0.7869 | 0.9450 |
- | -
| - | 2.0 | 14.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B1_infer.tar
)
|
| PVT_V2_B2 | 0.8206 | 0.9599 |
- | -
| - | 3.9 | 25.4 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_infer.tar
)
|
| PVT_V2_B0 | 0.7052 | 0.9016 |
2.87 | 3.46
| - | 0.53 | 3.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B0_infer.tar
)
|
| PVT_V2_B1 | 0.7869 | 0.9450 |
3.32 | 5.48
| - | 2.0 | 14.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B1_infer.tar
)
|
| PVT_V2_B2 | 0.8206 | 0.9599 |
5.94 | 9.98
| - | 3.9 | 25.4 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_infer.tar
)
|
| PVT_V2_B2_Linear | 0.8205 | 0.9605 | - | - | - | 3.8 | 22.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_Linear_infer.tar
)
|
| PVT_V2_B3 | 0.8310 | 0.9648 |
-
| - |- | 6.7 | 45.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B3_infer.tar
)
|
| PVT_V2_B4 | 0.8361 | 0.9666 |
-
| - | - | 9.8 | 62.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B4_infer.tar
)
|
| PVT_V2_B3 | 0.8310 | 0.9648 |
9.46
| - |- | 6.7 | 45.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B3_infer.tar
)
|
| PVT_V2_B4 | 0.8361 | 0.9666 |
14.04
| - | - | 9.8 | 62.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B4_infer.tar
)
|
| PVT_V2_B5 | 0.8374 | 0.9662 | - | - | - | 11.4 | 82.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B5_infer.tar
)
|
<a
name=
"LeViT"
></a>
...
...
@@ -736,9 +736,9 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
关于 NextViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
NextViT 系列模型文档
](
NextViT.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| NextViT_small_224 | 0.8248 | 0.9616 |
- | - | -
| 5.79 | 31.80 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_224_infer.tar
)
|
| NextViT_base_224 | 0.8324 | 0.9658 |
- | - | -
| 8.26 | 44.88 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_224_infer.tar
)
|
| NextViT_large_224 | 0.8363 | 0.9661 |
- | - | -
| 10.73 | 57.95 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_224_infer.tar
)
|
| NextViT_small_224 | 0.8248 | 0.9616 |
7.76 | 10.86 | 14.20
| 5.79 | 31.80 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_224_infer.tar
)
|
| NextViT_base_224 | 0.8324 | 0.9658 |
12.01 | 16.21 | 20.63
| 8.26 | 44.88 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_224_infer.tar
)
|
| NextViT_large_224 | 0.8363 | 0.9661 |
16.51 | 21.91 | 27.25
| 10.73 | 57.95 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_224_infer.tar
)
|
| NextViT_small_384 | 0.8401 | 0.9698 | - | - | - | 17.00 | 31.80 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_384_infer.tar
)
|
| NextViT_base_384 | 0.8465 | 0.9723 | - | - | - | 24.27 | 44.88 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_384_infer.tar
)
|
| NextViT_large_384 | 0.8492 | 0.9728 | - | - | - | 31.53 | 57.95 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_384_infer.tar
)
|
...
...
@@ -757,11 +757,11 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| UniFormer_small | 0.8294 | 0.9631 |
- | - | -
| 3.44 | 21.55 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_infer.tar
)
|
| UniFormer_small_plus | 0.8329 | 0.9656 |
- | - | -
| 3.99 | 24.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_plus_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_plus_infer.tar
)
|
| UniFormer_small_plus_dim64 | 0.8325 | 0.9649 |
- | - | -
| 3.99 | 24.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_plus_dim64_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_plus_dim64_infer.tar
)
|
| UniFormer_base | 0.8376 | 0.9672 |
- | - |-
| 7.77 | 49.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_base_infer.tar
)
|
| UniFormer_base_ls | 0.8398 | 0.9675 |
- | - | -
| 7.77 | 49.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_base_ls_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_base_ls_infer.tar
)
|
| UniFormer_small | 0.8294 | 0.9631 |
3.68 | 5.93 | 9.64
| 3.44 | 21.55 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_infer.tar
)
|
| UniFormer_small_plus | 0.8329 | 0.9656 |
4.12 | 7.03 | 11.59
| 3.99 | 24.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_plus_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_plus_infer.tar
)
|
| UniFormer_small_plus_dim64 | 0.8325 | 0.9649 |
3.91 | 6.56 | 10.69
| 3.99 | 24.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_plus_dim64_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_plus_dim64_infer.tar
)
|
| UniFormer_base | 0.8376 | 0.9672 |
8.19 | 12.98 |21.29
| 7.77 | 49.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_base_infer.tar
)
|
| UniFormer_base_ls | 0.8398 | 0.9675 |
14.79 | - | 22.20
| 7.77 | 49.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_base_ls_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_base_ls_infer.tar
)
|
<a
name=
"DSNet"
></a>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录