From a62d5503fc676e8a522232d6d4c35997fd5e5884 Mon Sep 17 00:00:00 2001 From: Felix Date: Wed, 26 May 2021 15:22:01 +0800 Subject: [PATCH] Create inception_v3.py add inception_v3 --- .../backbone/legendary_models/inception_v3.py | 502 ++++++++++++++++++ 1 file changed, 502 insertions(+) create mode 100644 ppcls/arch/backbone/legendary_models/inception_v3.py diff --git a/ppcls/arch/backbone/legendary_models/inception_v3.py b/ppcls/arch/backbone/legendary_models/inception_v3.py new file mode 100644 index 00000000..6f2d7457 --- /dev/null +++ b/ppcls/arch/backbone/legendary_models/inception_v3.py @@ -0,0 +1,502 @@ +# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle +from paddle import ParamAttr +import paddle.nn as nn +import paddle.nn.functional as F +from paddle.nn import Conv2D, BatchNorm, Linear, Dropout +from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D +from paddle.nn.initializer import Uniform +import math + +from ppcls.arch.backbone.base.theseus_layer import TheseusLayer + +__all__ = ["InceptionV3"] + + +NET_CONFIG = { + 'inception_a':[[192, 256, 288], [32, 64, 64]], + 'inception_b':[288], + 'inception_c':[[768, 768, 768, 768], [128, 160, 160, 192]], + 'inception_d':[768], + 'inception_e':[1280,2048] +} + + +def InceptionV3(**kwargs): + model = Inception_V3(NET_CONFIG, **kwargs) + return model + + +class ConvBNLayer(TheseusLayer): + def __init__(self, + num_channels, + num_filters, + filter_size, + stride=1, + padding=0, + groups=1, + act="relu", + name=None): + super(ConvBNLayer, self).__init__() + + self.conv = Conv2D( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=filter_size, + stride=stride, + padding=padding, + groups=groups, + weight_attr=ParamAttr(name=name+"_weights"), + bias_attr=False) + self.batch_norm = BatchNorm( + num_filters, + act=act, + param_attr=ParamAttr(name=name+"_bn_scale"), + bias_attr=ParamAttr(name=name+"_bn_offset"), + moving_mean_name=name+"_bn_mean", + moving_variance_name=name+"_bn_variance") + + def forward(self, inputs): + y = self.conv(inputs) + y = self.batch_norm(y) + return y + +class InceptionStem(TheseusLayer): + def __init__(self): + super(InceptionStem, self).__init__() + self.conv_1a_3x3 = ConvBNLayer(num_channels=3, + num_filters=32, + filter_size=3, + stride=2, + act="relu", + name="conv_1a_3x3") + self.conv_2a_3x3 = ConvBNLayer(num_channels=32, + num_filters=32, + filter_size=3, + stride=1, + act="relu", + name="conv_2a_3x3") + self.conv_2b_3x3 = ConvBNLayer(num_channels=32, + num_filters=64, + filter_size=3, + padding=1, + act="relu", + name="conv_2b_3x3") + + self.maxpool = MaxPool2D(kernel_size=3, stride=2, padding=0) + self.conv_3b_1x1 = ConvBNLayer(num_channels=64, + num_filters=80, + filter_size=1, + act="relu", + name="conv_3b_1x1") + self.conv_4a_3x3 = ConvBNLayer(num_channels=80, + num_filters=192, + filter_size=3, + act="relu", + name="conv_4a_3x3") + def forward(self, x): + y = self.conv_1a_3x3(x) + y = self.conv_2a_3x3(y) + y = self.conv_2b_3x3(y) + y = self.maxpool(y) + y = self.conv_3b_1x1(y) + y = self.conv_4a_3x3(y) + y = self.maxpool(y) + return y + + +class InceptionA(TheseusLayer): + def __init__(self, num_channels, pool_features, name=None): + super(InceptionA, self).__init__() + self.branch1x1 = ConvBNLayer(num_channels=num_channels, + num_filters=64, + filter_size=1, + act="relu", + name="inception_a_branch1x1_"+name) + self.branch5x5_1 = ConvBNLayer(num_channels=num_channels, + num_filters=48, + filter_size=1, + act="relu", + name="inception_a_branch5x5_1_"+name) + self.branch5x5_2 = ConvBNLayer(num_channels=48, + num_filters=64, + filter_size=5, + padding=2, + act="relu", + name="inception_a_branch5x5_2_"+name) + + self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, + num_filters=64, + filter_size=1, + act="relu", + name="inception_a_branch3x3dbl_1_"+name) + self.branch3x3dbl_2 = ConvBNLayer(num_channels=64, + num_filters=96, + filter_size=3, + padding=1, + act="relu", + name="inception_a_branch3x3dbl_2_"+name) + self.branch3x3dbl_3 = ConvBNLayer(num_channels=96, + num_filters=96, + filter_size=3, + padding=1, + act="relu", + name="inception_a_branch3x3dbl_3_"+name) + self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False) + self.branch_pool_conv = ConvBNLayer(num_channels=num_channels, + num_filters=pool_features, + filter_size=1, + act="relu", + name="inception_a_branch_pool_"+name) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + branch5x5 = self.branch5x5_1(x) + branch5x5 = self.branch5x5_2(branch5x5) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + + branch_pool = self.branch_pool(x) + + branch_pool = self.branch_pool_conv(branch_pool) + outputs = paddle.concat([branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1) + return outputs + + +class InceptionB(TheseusLayer): + def __init__(self, num_channels, name=None): + super(InceptionB, self).__init__() + self.branch3x3 = ConvBNLayer(num_channels=num_channels, + num_filters=384, + filter_size=3, + stride=2, + act="relu", + name="inception_b_branch3x3_"+name) + self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, + num_filters=64, + filter_size=1, + act="relu", + name="inception_b_branch3x3dbl_1_"+name) + self.branch3x3dbl_2 = ConvBNLayer(num_channels=64, + num_filters=96, + filter_size=3, + padding=1, + act="relu", + name="inception_b_branch3x3dbl_2_"+name) + self.branch3x3dbl_3 = ConvBNLayer(num_channels=96, + num_filters=96, + filter_size=3, + stride=2, + act="relu", + name="inception_b_branch3x3dbl_3_"+name) + self.branch_pool = MaxPool2D(kernel_size=3, stride=2) + + def forward(self, x): + branch3x3 = self.branch3x3(x) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + + branch_pool = self.branch_pool(x) + + outputs = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1) + + return outputs + +class InceptionC(TheseusLayer): + def __init__(self, num_channels, channels_7x7, name=None): + super(InceptionC, self).__init__() + self.branch1x1 = ConvBNLayer(num_channels=num_channels, + num_filters=192, + filter_size=1, + act="relu", + name="inception_c_branch1x1_"+name) + self.branch7x7_1 = ConvBNLayer(num_channels=num_channels, + num_filters=channels_7x7, + filter_size=1, + stride=1, + act="relu", + name="inception_c_branch7x7_1_"+name) + self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7, + num_filters=channels_7x7, + filter_size=(1, 7), + stride=1, + padding=(0, 3), + act="relu", + name="inception_c_branch7x7_2_"+name) + self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7, + num_filters=192, + filter_size=(7, 1), + stride=1, + padding=(3, 0), + act="relu", + name="inception_c_branch7x7_3_"+name) + + self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels, + num_filters=channels_7x7, + filter_size=1, + act="relu", + name="inception_c_branch7x7dbl_1_"+name) + self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7, + num_filters=channels_7x7, + filter_size=(7, 1), + padding = (3, 0), + act="relu", + name="inception_c_branch7x7dbl_2_"+name) + self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7, + num_filters=channels_7x7, + filter_size=(1, 7), + padding = (0, 3), + act="relu", + name="inception_c_branch7x7dbl_3_"+name) + self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7, + num_filters=channels_7x7, + filter_size=(7, 1), + padding = (3, 0), + act="relu", + name="inception_c_branch7x7dbl_4_"+name) + self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7, + num_filters=192, + filter_size=(1, 7), + padding = (0, 3), + act="relu", + name="inception_c_branch7x7dbl_5_"+name) + + self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False) + self.branch_pool_conv = ConvBNLayer(num_channels=num_channels, + num_filters=192, + filter_size=1, + act="relu", + name="inception_c_branch_pool_"+name) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch7x7 = self.branch7x7_1(x) + branch7x7 = self.branch7x7_2(branch7x7) + branch7x7 = self.branch7x7_3(branch7x7) + + branch7x7dbl = self.branch7x7dbl_1(x) + branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) + + branch_pool = self.branch_pool(x) + branch_pool = self.branch_pool_conv(branch_pool) + + outputs = paddle.concat([branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1) + + return outputs + +class InceptionD(TheseusLayer): + def __init__(self, num_channels, name=None): + super(InceptionD, self).__init__() + self.branch3x3_1 = ConvBNLayer(num_channels=num_channels, + num_filters=192, + filter_size=1, + act="relu", + name="inception_d_branch3x3_1_"+name) + self.branch3x3_2 = ConvBNLayer(num_channels=192, + num_filters=320, + filter_size=3, + stride=2, + act="relu", + name="inception_d_branch3x3_2_"+name) + self.branch7x7x3_1 = ConvBNLayer(num_channels=num_channels, + num_filters=192, + filter_size=1, + act="relu", + name="inception_d_branch7x7x3_1_"+name) + self.branch7x7x3_2 = ConvBNLayer(num_channels=192, + num_filters=192, + filter_size=(1, 7), + padding=(0, 3), + act="relu", + name="inception_d_branch7x7x3_2_"+name) + self.branch7x7x3_3 = ConvBNLayer(num_channels=192, + num_filters=192, + filter_size=(7, 1), + padding=(3, 0), + act="relu", + name="inception_d_branch7x7x3_3_"+name) + self.branch7x7x3_4 = ConvBNLayer(num_channels=192, + num_filters=192, + filter_size=3, + stride=2, + act="relu", + name="inception_d_branch7x7x3_4_"+name) + self.branch_pool = MaxPool2D(kernel_size=3, stride=2) + + def forward(self, x): + branch3x3 = self.branch3x3_1(x) + branch3x3 = self.branch3x3_2(branch3x3) + + branch7x7x3 = self.branch7x7x3_1(x) + branch7x7x3 = self.branch7x7x3_2(branch7x7x3) + branch7x7x3 = self.branch7x7x3_3(branch7x7x3) + branch7x7x3 = self.branch7x7x3_4(branch7x7x3) + + branch_pool = self.branch_pool(x) + + outputs = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1) + return outputs + +class InceptionE(TheseusLayer): + def __init__(self, num_channels, name=None): + super(InceptionE, self).__init__() + self.branch1x1 = ConvBNLayer(num_channels=num_channels, + num_filters=320, + filter_size=1, + act="relu", + name="inception_e_branch1x1_"+name) + self.branch3x3_1 = ConvBNLayer(num_channels=num_channels, + num_filters=384, + filter_size=1, + act="relu", + name="inception_e_branch3x3_1_"+name) + self.branch3x3_2a = ConvBNLayer(num_channels=384, + num_filters=384, + filter_size=(1, 3), + padding=(0, 1), + act="relu", + name="inception_e_branch3x3_2a_"+name) + self.branch3x3_2b = ConvBNLayer(num_channels=384, + num_filters=384, + filter_size=(3, 1), + padding=(1, 0), + act="relu", + name="inception_e_branch3x3_2b_"+name) + + self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, + num_filters=448, + filter_size=1, + act="relu", + name="inception_e_branch3x3dbl_1_"+name) + self.branch3x3dbl_2 = ConvBNLayer(num_channels=448, + num_filters=384, + filter_size=3, + padding=1, + act="relu", + name="inception_e_branch3x3dbl_2_"+name) + self.branch3x3dbl_3a = ConvBNLayer(num_channels=384, + num_filters=384, + filter_size=(1, 3), + padding=(0, 1), + act="relu", + name="inception_e_branch3x3dbl_3a_"+name) + self.branch3x3dbl_3b = ConvBNLayer(num_channels=384, + num_filters=384, + filter_size=(3, 1), + padding=(1, 0), + act="relu", + name="inception_e_branch3x3dbl_3b_"+name) + self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False) + self.branch_pool_conv = ConvBNLayer(num_channels=num_channels, + num_filters=192, + filter_size=1, + act="relu", + name="inception_e_branch_pool_"+name) + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch3x3 = self.branch3x3_1(x) + branch3x3 = [ + self.branch3x3_2a(branch3x3), + self.branch3x3_2b(branch3x3), + ] + branch3x3 = paddle.concat(branch3x3, axis=1) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [ + self.branch3x3dbl_3a(branch3x3dbl), + self.branch3x3dbl_3b(branch3x3dbl), + ] + branch3x3dbl = paddle.concat(branch3x3dbl, axis=1) + + branch_pool = self.branch_pool(x) + branch_pool = self.branch_pool_conv(branch_pool) + + outputs = paddle.concat([branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1) + return outputs + + +class Inception_V3(TheseusLayer): + def __init__(self, config, class_num=1000, **kwargs): + super(Inception_V3, self).__init__() + + self.inception_a_list = config['inception_a'] + self.inception_c_list = config['inception_c'] + self.inception_b_list = config['inception_b'] + self.inception_d_list = config['inception_d'] + self.inception_e_list = config ['inception_e'] + + self.inception_stem = InceptionStem() + + self.inception_block_list = [] + for i in range(len(self.inception_a_list[0])): + inception_a = InceptionA(self.inception_a_list[0][i], + self.inception_a_list[1][i], + name=str(i+1)) + self.inception_block_list.append(inception_a) + + for i in range(len(self.inception_b_list)): + inception_b = InceptionB(self.inception_b_list[i], name=str(i+1)) + self.inception_block_list.append(inception_b) + + for i in range(len(self.inception_c_list[0])): + inception_c = InceptionC(self.inception_c_list[0][i], + self.inception_c_list[1][i], + name=str(i+1)) + self.inception_block_list.append(inception_c) + + for i in range(len(self.inception_d_list)): + inception_d = InceptionD(self.inception_d_list[i], name=str(i+1)) + self.inception_block_list.append(inception_d) + + for i in range(len(self.inception_e_list)): + inception_e = InceptionE(self.inception_e_list[i], name=str(i+1)) + self.inception_block_list.append(inception_e) + + self.gap = AdaptiveAvgPool2D(1) + self.drop = Dropout(p=0.2, mode="downscale_in_infer") + stdv = 1.0 / math.sqrt(2048 * 1.0) + self.out = Linear( + 2048, + class_num, + weight_attr=ParamAttr( + initializer=Uniform(-stdv, stdv), name="fc_weights"), + bias_attr=ParamAttr(name="fc_offset")) + + def forward(self, x): + y = self.inception_stem(x) + for inception_block in self.inception_block_list: + y = inception_block(y) + y = self.gap(y) + y = paddle.reshape(y, shape=[-1, 2048]) + y = self.drop(y) + y = self.out(y) + return y + + -- GitLab