diff --git a/docs/zh_CN/faq_series/faq_2020_s1.md b/docs/zh_CN/faq_series/faq_2020_s1.md index 20868b921c31c8e5747407c96a6cda342605bbbe..7231750918c8e5c26af17a7f874c98ccec31eea3 100644 --- a/docs/zh_CN/faq_series/faq_2020_s1.md +++ b/docs/zh_CN/faq_series/faq_2020_s1.md @@ -102,7 +102,7 @@ ResNet系列模型中,相比于其他模型,ResNet_vd模型在预测速度 ### Q2.5 PaddleClas中提供了很多ssld模型,其应用的价值是? -**A**: PaddleClas中提供了很多ssld预训练模型,其通过半监督知识蒸馏的方法获得了更好的预训练权重,在迁移任务或者下游视觉任务中,无须替换结构文件、只需要替换精度更高的ssld预训练模型即可提升精度,如在PaddleSeg中,[HRNet](https://github.com/PaddlePaddle/PaddleSeg/blob/release/v0.7.0/docs/model_zoo.md)使用了ssld预训练模型的权重后,精度大幅度超越业界同样的模型的精度,在PaddleDetection中,[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.4/configs/ppyolo/README_cn.md)使用了ssld预训练权重后,在较高的baseline上仍有进一步的提升。使用ssld预训练权重做分类的迁移表现也很抢眼,在[SSLD蒸馏策略](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/advanced_tutorials/distillation/distillation.md)部分介绍了知识蒸馏对于分类任务迁移的收益。 +**A**: PaddleClas中提供了很多ssld预训练模型,其通过半监督知识蒸馏的方法获得了更好的预训练权重,在迁移任务或者下游视觉任务中,无须替换结构文件、只需要替换精度更高的ssld预训练模型即可提升精度,如在PaddleSeg中,[HRNet](https://github.com/PaddlePaddle/PaddleSeg/blob/release/v0.7.0/docs/model_zoo.md)使用了ssld预训练模型的权重后,精度大幅度超越业界同样的模型的精度,在PaddleDetection中,[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.4/configs/ppyolo/README_cn.md)使用了ssld预训练权重后,在较高的baseline上仍有进一步的提升。使用ssld预训练权重做分类的迁移表现也很抢眼,在[SSLD蒸馏策略](../advanced_tutorials/distillation/distillation.md)部分介绍了知识蒸馏对于分类任务迁移的收益。