未验证 提交 a4249415 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1979 from cuicheng01/add_person_demo

update PULC_person_exists.md
# PULC 有人/无人分类模型
此处提供了用户使用 PaddleClas 的 超轻量图像分类方案(PULC, Practical Ultra Lightweight Classification) 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络 PPLCNet、SSLD 预训练权重、EDA 数据增强策略、SKL-UGI 知识蒸馏策略、SHAS 超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
------
## 目录
- [1. 应用场景介绍](#1)
- [2. 模型快速体验](#2)
- [2.1 PULC 有人/无人分类模型介绍](#2.1)
- [2.2 环境配置](#2.2)
- [2.3 模型推理预测](#2.3)
- [2.3.1 下载模型](#2.3.1)
- [2.3.2 模型推理预测](#2.3.2)
- [2.3.2.1 预测单张图像](#2.3.2.1)
- [2.3.2.2 基于文件夹的批量预测](#2.3.2.2)
- [3.PULC 有人/无人分类模型训练](#3)
- [3.1 数据准备](#3.1)
- [3.1.1 数据集来源](#3.1.1)
- [3.1.2 数据集获取](#3.1.2)
- [3.2 模型训练](#3.2)
- [3.2.1 基于默认超参数训练轻量级模型](#3.2.1)
- [3.2.2 基于默认超参数训练教师模型](#3.2.2)
- [3.2.3 基于默认超参数进行蒸馏训练](#3.2.3)
- [4. 模型评估与推理部署](#4)
- [4.1 模型评估](#4.1)
- [4.2 模型预测](#4.2)
- [4.3 使用 inference 模型进行推理](#4.3)
- [4.3.1 导出 inference 模型](#4.3.1)
- [4.3.2 基于 inference 模型 python 推理预测](#4.3.2)
- [4.3.3 基于 inference 模型 C++ 推理预测](#4.3.3)
- [4.4 基于 Paddle Serving 完成模型服务化部署](#4.4)
- [4.5 基于 Paddle Lite 完成模型端侧部署](#4.5)
<a name="1"></a>
- [1. 模型和应用场景介绍](#1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
- [3.2.1 数据集来源](#3.2.1)
- [3.2.2 数据集获取](#3.2.2)
- [3.3 模型训练](#3.3)
- [3.4 模型评估](#3.4)
- [3.5 模型预测](#3.5)
- [4. 模型压缩](#4)
- [4.1 SKL-UGI 知识蒸馏](#4.1)
- [4.1.1 教师模型训练](#4.1.1)
- [4.1.2 蒸馏训练](#4.1.2)
- [5. 超参搜索](#5)
- [6. 模型推理部署](#6)
- [6.1 推理模型准备](#6.1)
- [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
- [6.1.2 直接下载 inference 模型](#6.1.2)
- [6.2 基于 Python 预测引擎推理](#6.2)
- [6.2.1 预测单张图像](#6.2.1)
- [6.2.2 基于文件夹的批量预测](#6.2.2)
- [6.3 基于 C++ 预测引擎推理](#6.3)
- [6.4 服务化部署](#6.4)
- [6.5 端侧部署](#6.5)
- [6.6 Paddle2ONNX 模型转换与预测](#6.6)
## 1. 应用场景介绍
该案例提供了可以产出超轻量级二分类模型的方法。使用该方法训练得到的模型可以快速判断图片中是否有人,该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。
<a name="2"></a>
<a name="1"></a>
## 2. 模型快速体验
## 1. 模型和应用场景介绍
<a name="2.1"></a>
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的有人/无人的分类模型。该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。
### 2.1 PULC 有人/无人分类模型介绍
下表列出了判断图片中是否有人的二分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
下表列出了判断图片中是否有人的二分类模型的相关指标,其中,最后一行是根据 PULC 策略训练得到的模型,该模型与其他较大的模型相比,相同推理速度下拥有更高的精度,相同推理速度下拥有更高的精度。比如,与 SwinTransformer-tiny 相比,PULC 得到的模型相同在精度下,速度快 70+ 倍。训练方法和推理部署方法将在下面详细介绍。
| 模型 | 精度(%) | 延时(ms) | 存储(M) | 策略 |
| 模型 | Tpr(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny | <b>95.69<b> | 175.52 | 107 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0 | <b>91.97<b> | 4.70 | 17 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | <b>89.57<b> | 2.36 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | <b>92.10<b> | 2.36 | 6.5 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | <b>93.43<b> | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>95.60<b> | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
**备注:** 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2.2"></a>
### 2.2 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="2.3"></a>
### 2.3 模型推理预测
<a name="2.3.1"></a>
| SwinTranformer_tiny | 95.69 | 175.52 | 107 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0 | 91.97 | 4.70 | 17 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 89.57 | 2.36 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 92.10 | 2.36 | 6.5 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 93.43 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>95.60<b> | <b>2.36<b> | <b>6.5<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_large_x1_0 低两个多百分点,但是速度提升 2 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 2.6 个百分点,进一步地,当融合EDA策略后,精度可以再提升 1.3 个百分点,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 2.2 个百分点。此时,PPLCNet_x1_0 达到了 SwinTranformer_tiny 模型的精度,但是速度快 70+ 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
#### 2.3.1 下载模型
* 进入 `deploy` 运行目录。
```
cd deploy
```
下载有人/无人分类的推理模型。
```
mkdir models
cd models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/person_exists_infer.tar && tar -xf person_exists_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── person_exists_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="2.3.2"></a>
#### 2.3.2 模型推理预测
<a name="2.3.2.1"></a>
##### 2.3.2.1 预测单张图像
返回 `deploy` 目录:
```
cd ../
```
运行下面的命令,对图像 `./images/PULC/person_exists/objects365_02035329.jpg` 进行有人/无人分类。
```shell
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
```
输出结果如下。
```
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
```
**备注:** 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的阈值为 `0.9794`,故此处的 `threshold``0.9794`。该阈值的确定方法可以参考[3.2.1节](#3.2.1)备注部分。
<a name="2.3.2.2"></a>
**备注:**
* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启MKLDNN加速策略,线程数为10。
* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
#### 2.3.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.infer_imgs="./images/PULC/person_exists/"
```
终端中会输出该文件夹内所有图像的分类结果,如下所示。
<a name="2"></a>
```
objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
```
## 2. 模型快速体验
(pip方式,待补充)
<a name="3"></a>
其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
## 3. 模型训练、评估和预测
<a name="3.1"></a>
<a name="3"></a>
### 3.1 环境配置
## 3.PULC 有人/无人分类模型训练
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.1"></a>
<a name="3.2"></a>
### 3.1 数据准备
### 3.2 数据准备
<a name="3.1.1"></a>
<a name="3.2.1"></a>
#### 3.1.1 数据集来源
#### 3.2.1 数据集来源
本案例中所使用的所有数据集均为开源数据,`train` 集合为[MS-COCO 数据](https://cocodataset.org/#overview)的训练集的子集,`val` 集合为[Object365 数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`[ImageNet-1k 数据](https://www.image-net.org/)的验证集。
<a name="3.1.2"></a>
<a name="3.2.2"></a>
#### 3.1.2 数据集获取
#### 3.2.2 数据集获取
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
......@@ -221,16 +141,19 @@ cd ../
└── val_list.txt.debug
```
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug``val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt``val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt` 。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](@ruoyu)
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug``val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt``val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt`
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)
<a name="3.2"></a>
### 3.2 模型训练
<a name="3.3"></a>
<a name="3.2.1"></a>
### 3.3 模型训练
#### 3.2.1 基于默认超参数训练轻量级模型
`ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
......@@ -250,9 +173,61 @@ python3 -m paddle.distributed.launch \
* 在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的 `Fpr``Tpr` 值,以及当前的 `threshold`值,`Tpr` 值反映了在当前 `Fpr` 值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳 `Fpr` 所对应的分类阈值,可用于后续模型部署落地等。
<a name="3.2.2"></a>
<a name="3.4"></a>
### 3.4 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/DPPLCNet_x1_0/best_model"
```
#### 3.2.2 基于默认超参数训练教师模型
其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
<a name="3.5"></a>
### 3.5 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
```python
python3 tools/infer.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
```
输出结果如下:
```
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person_exists/val/objects365_01780637.jpg'}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/person_exists/objects365_02035329.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 这里的 `Infer.PostProcess.threshold` 的值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。
<a name="4"></a>
## 4. 模型压缩
<a name="4.1"></a>
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
#### 4.1.1 教师模型训练
复用 `ppcls/configs/PULC/person_exists/PPLCNet/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
......@@ -267,9 +242,9 @@ python3 -m paddle.distributed.launch \
验证集的最佳指标为 `0.96-0.98` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
<a name="3.2.3"></a>
<a name="4.1.2"></a>
#### 3.2.3 基于默认超参数进行蒸馏训练
#### 4.1.2 蒸馏训练
配置文件`ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
......@@ -285,101 +260,149 @@ python3 -m paddle.distributed.launch \
验证集的最佳指标为 `0.95-0.97` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
**备注:**
<a name="5"></a>
* 此时的默认超参数是经过`SHAS超参数搜索策略`得到的,关于此部分内容,可以参考[SHAS 超参数搜索策略](#TODO待添加链接)
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
<a name="4"></a>
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
## 4. 模型评估与推理部署
<a name="6"></a>
<a name="4.1"></a>
## 6. 模型推理部署
### 4.1 模型评估
<a name="6.1"></a>
训练好模型之后,可以通过以下命令实现对模型指标的评估。
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
```bash
python3 tools/eval.py \
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/DistillationModel/best_model_student"
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_exists_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_person_exists_infer` 文件夹,`models` 文件夹下应有如下文件结构:
```
├── PPLCNet_x1_0_person_exists_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="4.2"></a>
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
### 4.2 模型预测
<a name="6.1.2"></a>
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
### 6.1.2 直接下载 inference 模型
```python
python3 tools/infer.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/person_exists_infer.tar && tar -xf person_exists_infer.tar
```
输出结果如下
解压完毕后,`models` 文件夹下应有如下文件结构
```
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person_exists/val/objects365_01780637.jpg'}]
├── person_exists_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
**备注:**
* 默认是对 `deploy/images/PULC/person_exists/objects365_02035329.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 这里的 `Infer.PostProcess.threshold` 的值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。
<a name="6.2"></a>
<a name="4.3"></a>
### 6.2 基于 Python 预测引擎推理
### 4.3 使用 inference 模型进行推理
<a name="4.3.1"></a>
<a name="6.2.1"></a>
### 4.3.1 导出 inference 模型
#### 6.2.1 预测单张图像
通过导出 inference 模型,PaddlePaddle 支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理:
首先,对训练好的模型进行转换:
返回 `deploy` 目录:
```bash
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_exists_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_person_exists_infer` 文件夹,该文件夹中的模型与 [2.3 节](#2.3)下载的推理预测模型格式一致。
cd ../
```
<a name="4.3.2"></a>
运行下面的命令,对图像 `./images/PULC/person_exists/objects365_02035329.jpg` 进行有人/无人分类。
### 4.3.2 基于 inference 模型 python 推理预测
```shell
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
```
推理预测的脚本为:
输出结果如下。
```
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person_exists_infer" -o PostProcess.ThreshOutput.threshold=0.9794
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
```
**备注:** 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的阈值为 `0.9794`,故此处的 `threshold``0.9794`。该阈值的确定方法可以参考[3.2节](#3.2)备注部分。
<a name="6.2.2"></a>
#### 6.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.infer_imgs="./images/PULC/person_exists/"
```
**备注:**
终端中会输出该文件夹内所有图像的分类结果,如下所示。
- 此处的 `PostProcess.ThreshOutput.threshold` 由eval时的最佳 `threshold` 来确定。
- 更多关于推理的细节,可以参考[2.3节](#2.3)
```
objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
```
其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
<a name="4.3.3"></a>
<a name="6.3"></a>
### 4.3.3 基于 inference 模型 C++ 推理预测
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了 C++ 推理预测的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是Windows平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
<a name="6.4"></a>
### 4.4 基于 Paddle Serving 完成模型服务化部署
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
### 4.5 基于 Paddle Lite 完成模型端侧部署
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)
完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册