未验证 提交 a1b01472 编写于 作者: D dyning 提交者: GitHub

Update README.md

上级 e2c7782a
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
<img src="./docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg" width="700"> <img src="./docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg" width="700">
</div> </div>
上图对比了一些最新的面向服务器端应用场景的模型,在使用V100,FP32和TensorRT,batch size为1时的预测时间及其准确率,图中准确率83.0%的ResNet50_vd_ssld_v2和83.7%的ResNet101_vd_ssld,是采用PaddleClas提供的SSLD知识蒸馏方案训练的模型,其中v2表示在训练时添加了AutoAugment数据增广策略。图中相同颜色和符号的点代表同一系列不同规模的模型。不同模型的简介、FLOPS、Parameters以及详细的GPU预测时间(包括不同batchsize的T4卡预测速度)请参考文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/models/models_intro.html) 上图对比了一些最新的面向服务器端应用场景的模型,在使用V100,FP32和TensorRT,batch size为1时的预测时间及其准确率,图中准确率83.0%的ResNet50_vd_ssld_v2、83.7%的ResNet101_vd_ssld和85.1%的Res2Net200_vd_26w_4s_ssld,是采用PaddleClas提供的SSLD知识蒸馏方案训练的模型,其中v2表示在训练时添加了AutoAugment数据增广策略。图中相同颜色和符号的点代表同一系列不同规模的模型。不同模型的简介、FLOPS、Parameters以及详细的GPU预测时间(包括不同batchsize的T4卡预测速度)请参考文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/models/models_intro.html)
<div align="center"> <div align="center">
<img <img
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册