Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a1ad2c89
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a1ad2c89
编写于
12月 13, 2021
作者:
S
sibo2rr
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add speed in V100 and mobile
上级
4e6a3c85
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
558 addition
and
417 deletion
+558
-417
docs/zh_CN/algorithm_introduction/ImageNet_models.md
docs/zh_CN/algorithm_introduction/ImageNet_models.md
+218
-220
docs/zh_CN/models/DLA.md
docs/zh_CN/models/DLA.md
+18
-1
docs/zh_CN/models/DPN_DenseNet.md
docs/zh_CN/models/DPN_DenseNet.md
+13
-13
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
+16
-16
docs/zh_CN/models/HRNet.md
docs/zh_CN/models/HRNet.md
+11
-11
docs/zh_CN/models/HarDNet.md
docs/zh_CN/models/HarDNet.md
+13
-0
docs/zh_CN/models/Inception.md
docs/zh_CN/models/Inception.md
+9
-9
docs/zh_CN/models/MixNet.md
docs/zh_CN/models/MixNet.md
+11
-0
docs/zh_CN/models/Mobile.md
docs/zh_CN/models/Mobile.md
+124
-79
docs/zh_CN/models/Others.md
docs/zh_CN/models/Others.md
+10
-10
docs/zh_CN/models/PP-LCNet.md
docs/zh_CN/models/PP-LCNet.md
+28
-11
docs/zh_CN/models/ReXNet.md
docs/zh_CN/models/ReXNet.md
+13
-0
docs/zh_CN/models/RedNet.md
docs/zh_CN/models/RedNet.md
+14
-1
docs/zh_CN/models/ResNeSt_RegNet.md
docs/zh_CN/models/ResNeSt_RegNet.md
+13
-2
docs/zh_CN/models/ResNet_and_vd.md
docs/zh_CN/models/ResNet_and_vd.md
+18
-18
docs/zh_CN/models/SEResNext_and_Res2Net.md
docs/zh_CN/models/SEResNext_and_Res2Net.md
+29
-26
未找到文件。
docs/zh_CN/algorithm_introduction/ImageNet_models.md
浏览文件 @
a1ad2c89
...
...
@@ -62,30 +62,30 @@
### 2.1 服务器端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.
434 | 6.222 | 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 |
3.531 | 8.090 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 |
6.117 | 13.762 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 |
4.527 | 9.657 | 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
| Res2Net101_vd_
<br>
26w_4s_ssld | 0.839 | 0.806 | 0.033 |
8.087 | 17.312 | 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 1
4.678 | 32.350 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 |
7.406 | 13.297 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 1
3.707 | 17.34 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
| SE_HRNet_W64_C_ssld | 0.848 | - | - |
31.697 | 94.995 | 29.00 | 129.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
-----------------------------------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.
00 | 3.26 | 5.85 | 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld.tar
)
|
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 |
2.59 | 4.87 | 7.62 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 |
4.43 | 8.25 | 12.58 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 |
3.58 | 6.35 | 9.52 | 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar
)
|
| Res2Net101_vd_
<br>
26w_4s_ssld | 0.839 | 0.806 | 0.033 |
6.33 | 11.02 | 16.11 | 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 1
1.47 | 19.75 | 28.83 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar
)
|
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 |
6.66 | 8.92 | 11.93 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar
)
|
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 1
1.09 | 17.04 | 27.28 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar
)
|
| SE_HRNet_W64_C_ssld | 0.848 | - | - |
17.11 | 26.87 | 43.24 | 29.00 | 129.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar
)
|
<a
name=
"2.2"
></a>
### 2.2 移动端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | SD855 time(ms)
<br>
bs=1
| FLOPs(M) | Params(M) | 模型大小(M) | 下载地址
|
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 |
32.523 | 578.88 | 4.25 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 2
3.318 | 327.84 | 3.54 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 |
2.635 | 14.56 | 1.67 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 1
9.308 | 229.66 | 5.50 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 |
6.546 | 63.67 | 2.95 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.
983 | 236.89 | 7.38 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | SD855 time(ms)
<br>
bs=1
, thread=1 | SD855 time(ms)
<br/>
bs=1, thread=2 | SD855 time(ms)
<br/>
bs=1, thread=4 | FLOPs(M) | Params(M) | 模型大小(M) | 预训练模型下载地址 | inference模型下载地址
|
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
-----------------------------------|-----------------------------------|-----------------------------------|
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 |
30.19 | 17.85 | 10.24 | 578.88 | 4.25 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar
)
|
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 2
0.71 | 12.70 | 8.06 | 327.84 | 3.54 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar
)
|
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 |
| | | 14.56 | 1.67 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
|
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 1
6.56 | 10.10 | 6.86 | 229.66 | 5.50 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar
)
|
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 |
5.64 | 3.67 | 2.61 | 63.67 | 2.95 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar
)
|
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.
16 | 12.26 | 10.18 | 236.89 | 7.38 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar
)
|
<a
name=
"2.3"
></a>
...
...
@@ -108,16 +108,16 @@
PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
PP-LCNet 系列模型文档
](
../models/PP-LCNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
<br>
bs=1 | FLOPs(M) | Params(M) | 下载地址 |
|:--:|:--:|:--:|:--:|
:--:|:--:
|:--:|
| PPLCNet_x0_25 |0.5186 | 0.7565 |
1.74 | 18.25 | 1.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
)
|
| PPLCNet_x0_35 |0.5809 | 0.8083 |
1.92 | 29.46 | 1.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
)
|
| PPLCNet_x0_5 |0.6314 | 0.8466 |
2.05 | 47.28 | 1.89 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
)
|
| PPLCNet_x0_75 |0.6818 | 0.8830 |
2.29 | 98.82 | 2.37 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
)
|
| PPLCNet_x1_0 |0.7132 | 0.9003 |
2.46 | 160.81 | 2.96 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
)
|
| PPLCNet_x1_5 |0.7371 | 0.9153 |
3.19 | 341.86 | 4.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams
)
|
| PPLCNet_x2_0 |0.7518 | 0.9227 |
4.27 | 590 | 6.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams
)
|
| PPLCNet_x2_5 |0.7660 | 0.9300 |
5.39 | 906 | 9.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
<br>
bs=1 | FLOPs(M) | Params(M) |
预训练模型下载地址 | inference模型
下载地址 |
|:--:|:--:|:--:|:--:|
----|----|----
|:--:|
| PPLCNet_x0_25 |0.5186 | 0.7565 |
1.61785 | 18.25 | 1.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar
)
|
| PPLCNet_x0_35 |0.5809 | 0.8083 |
2.11344 | 29.46 | 1.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar
)
|
| PPLCNet_x0_5 |0.6314 | 0.8466 |
2.72974 | 47.28 | 1.89 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar
)
|
| PPLCNet_x0_75 |0.6818 | 0.8830 |
4.51216 | 98.82 | 2.37 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar
)
|
| PPLCNet_x1_0 |0.7132 | 0.9003 |
6.49276 | 160.81 | 2.96 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar
)
|
| PPLCNet_x1_5 |0.7371 | 0.9153 |
12.2601 | 341.86 | 4.52 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar
)
|
| PPLCNet_x2_0 |0.7518 | 0.9227 |
20.1667 | 590 | 6.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar
)
|
| PPLCNet_x2_5 |0.7660 | 0.9300 |
29.595 | 906 | 9.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar
)
|
<a
name=
"4"
></a>
...
...
@@ -125,23 +125,23 @@ PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该
ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
ResNet 及其 Vd 系列模型文档
](
../models/ResNet_and_vd.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
| ResNet18 | 0.7098 | 0.8992 | 1.
45606 | 3.56305 | 1.83 | 11.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.
54557 | 3.85363 | 2.07 | 11.72 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
|
| ResNet34 | 0.7457 | 0.9214 |
2.34957 | 5.89821 | 3.68 | 21.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams
)
|
| ResNet34_vd | 0.7598 | 0.9298 | 2.
43427 | 6.22257 | 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.
43427 | 6.22257 | 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
| ResNet50 | 0.7650 | 0.9300 |
3.47712 | 7.84421 | 4.11 | 25.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
)
|
| ResNet50_vc | 0.7835 | 0.9403 |
3.52346 | 8.10725 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
|
| ResNet50_vd | 0.7912 | 0.9444 |
3.53131 | 8.09057 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
|
| ResNet101 | 0.7756 | 0.9364 |
6.07125 | 13.40573 | 7.83 | 44.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams
)
|
| ResNet101_vd | 0.8017 | 0.9497 |
6.11704 | 13.76222 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
|
| ResNet152 | 0.7826 | 0.9396 |
8.50198 | 19.17073 | 11.56 | 60.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams
)
|
| ResNet152_vd | 0.8059 | 0.9530 |
8.54376 | 19.52157 | 11.80 | 60.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
|
| ResNet200_vd | 0.8093 | 0.9533 |
10.80619 | 25.01731 | 15.30 | 74.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
|
| ResNet50_vd_
<br>
ssld | 0.8300 | 0.9640 |
3.53131 | 8.09057 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
| ResNet101_vd_
<br>
ssld | 0.8373 | 0.9669 |
6.11704 | 13.76222 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ResNet18 | 0.7098 | 0.8992 | 1.
22 | 2.19 | 3.63 | 1.83 | 11.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.
26 | 2.28 | 3.89 | 2.07 | 11.72 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar
)
|
| ResNet34 | 0.7457 | 0.9214 |
1.97 | 3.25 | 5.70 | 3.68 | 21.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_infer.tar
)
|
| ResNet34_vd | 0.7598 | 0.9298 | 2.
00 | 3.28 | 5.84 | 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.
00 | 3.26 | 5.85 | 3.93 | 21.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar
)
|
| ResNet50 | 0.7650 | 0.9300 |
2.54 | 4.79 | 7.40 | 4.11 | 25.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar
)
|
| ResNet50_vc | 0.7835 | 0.9403 |
2.57 | 4.83 | 7.52 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vc_infer.tar
)
|
| ResNet50_vd | 0.7912 | 0.9444 |
2.60 | 4.86 | 7.63 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar
)
|
| ResNet101 | 0.7756 | 0.9364 |
4.37 | 8.18 | 12.38 | 7.83 | 44.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_infer.tar
)
|
| ResNet101_vd | 0.8017 | 0.9497 |
4.43 | 8.25 | 12.60 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar
)
|
| ResNet152 | 0.7826 | 0.9396 |
6.05 | 11.41 | 17.33 | 11.56 | 60.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar
)
|
| ResNet152_vd | 0.8059 | 0.9530 |
6.11 | 11.51 | 17.59 | 11.80 | 60.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar
)
|
| ResNet200_vd | 0.8093 | 0.9533 |
7.70 | 14.57 | 22.16 | 15.30 | 74.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar
)
|
| ResNet50_vd_
<br>
ssld | 0.8300 | 0.9640 |
2.59 | 4.87 | 7.62 | 4.35 | 25.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar
)
|
| ResNet101_vd_
<br>
ssld | 0.8373 | 0.9669 |
4.43 | 8.25 | 12.58 | 8.08 | 44.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar
)
|
<a
name=
"5"
></a>
...
...
@@ -149,48 +149,48 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
移动端系列模型文档
](
../models/Mobile.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
<br>
bs=1
| FLOPs(M) | Params(M) | 模型大小(M) | 下载地址
|
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_
<br>
x0_25 | 0.5143 | 0.7546 |
3.21985 | 43.56 | 0.48 | 1.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_5 | 0.6352 | 0.8473 |
9.579599 | 154.57 | 1.34 | 5.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_75 | 0.6881 | 0.8823 | 1
9.436399 | 333.00 | 2.60 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams
)
|
| MobileNetV1 | 0.7099 | 0.8968 | 3
2.523048 | 578.88 | 4.25 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams
)
|
| MobileNetV1_
<br>
ssld | 0.7789 | 0.9394 | 3
2.523048 | 578.88 | 4.25 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_25 | 0.5321 | 0.7652 | 3.
79925 | 34.18 | 1.53 | 6.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_5 | 0.6503 | 0.8572 |
8.7021 | 99.48 | 1.98 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_75 | 0.6983 | 0.8901 | 1
5.531351 | 197.37 | 2.65 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams
)
|
| MobileNetV2 | 0.7215 | 0.9065 | 2
3.317699 | 327.84 | 3.54 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x1_5 | 0.7412 | 0.9167 | 4
5.623848 | 702.35 | 6.90 | 26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x2_0 | 0.7523 | 0.9258 |
74.291649 | 1217.25 | 11.33 | 43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
)
|
| MobileNetV2_
<br>
ssld | 0.7674 | 0.9339 | 2
3.317699 | 327.84 | 3.54 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_25 | 0.7641 | 0.9295 | 2
8.217701 | 362.70 | 7.47 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_0 | 0.7532 | 0.9231 | 1
9.30835 | 229.66 | 5.50 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_75 | 0.7314 | 0.9108 | 1
3.5646 | 151.70 | 3.93 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_5 | 0.6924 | 0.8852 |
7.49315 | 71.83 | 2.69 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_35 | 0.6432 | 0.8546 |
5.13695 | 40.90 | 2.11 | 8.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x1_25 | 0.7067 | 0.8951 |
9.2745 | 100.07 | 3.64 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x1_0 | 0.6824 | 0.8806 |
6.5463 | 63.67 | 2.95 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_75 | 0.6602 | 0.8633 |
5.28435 | 46.02 | 2.38 | 9.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_5 | 0.5921 | 0.8152 |
3.35165 | 22.60 | 1.91 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_35 | 0.5303 | 0.7637 | 2.
6352 | 14.56 | 1.67 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_35_ssld | 0.5555 | 0.7771 |
2.6352 | 14.56 | 1.67 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_0_ssld | 0.7896 | 0.9448 | 1
9.30835 | 229.66 | 5.50 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_
<br>
x1_0_ssld | 0.7129 | 0.9010 |
6.5463 | 63.67 | 2.95 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
| ShuffleNetV2 | 0.6880 | 0.8845 |
10.941 | 148.86 | 2.29 | 9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_25 | 0.4990 | 0.7379 |
2.329 | 18.95 | 0.61 | 2.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_33 | 0.5373 | 0.7705 | 2.
64335 | 24.04 | 0.65 | 2.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_5 | 0.6032 | 0.8226 |
4.2613 | 42.58 | 1.37 | 5.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x1_5 | 0.7163 | 0.9015 | 1
9.3522 | 301.35 | 3.53 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x2_0 | 0.7315 | 0.9120 | 3
4.770149 | 571.70 | 7.40 | 28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
swish | 0.7003 | 0.8917 |
16.023151 | 148.86 | 2.29 | 9.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams
)
|
| GhostNet_
<br>
x0_5 | 0.6688 | 0.8695 | 5.
7143 | 46.15 | 2.60 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_0 | 0.7402 | 0.9165 | 1
3.5587 | 148.78 | 5.21 | 20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3 | 0.7579 | 0.9254 | 19.
9825 | 236.89 | 7.38 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3_ssld | 0.7938 | 0.9449 | 19.
9825 | 236.89 | 7.38 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
| ESNet_x0_25 |
62.48 | 83.46 || 30.85 | 2.83 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams
)
|
| ESNet_x0_5 |
68.82 | 88.04 || 67.31 | 3.25 | 13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams
)
|
| ESNet_x0_75 |
72.24 | 90.45 || 123.74 | 3.87 | 15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams
)
|
| ESNet_x1_0 |
73.92 | 91.40 || 197.33 | 4.64 | 18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
<br>
bs=1
, thread=1 | SD855 time(ms)
<br/>
bs=1, thread=2 | SD855 time(ms)
<br/>
bs=1, thread=4 | FLOPs(M) | Params(M) | 模型大小(M) | 预训练下载地址 | inference模型下载地址
|
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_
<br>
x0_25 | 0.5143 | 0.7546 |
2.88 | 1.82 | 1.26 | 43.56 | 0.48 | 1.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_25_infer.tar
)
|
| MobileNetV1_
<br>
x0_5 | 0.6352 | 0.8473 |
8.74 | 5.26 | 3.09 | 154.57 | 1.34 | 5.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_5_infer.tar
)
|
| MobileNetV1_
<br>
x0_75 | 0.6881 | 0.8823 | 1
7.84 | 10.61 | 6.21 | 333.00 | 2.60 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_75_infer.tar
)
|
| MobileNetV1 | 0.7099 | 0.8968 | 3
0.24 | 17.86 | 10.30 | 578.88 | 4.25 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_infer.tar
)
|
| MobileNetV1_
<br>
ssld | 0.7789 | 0.9394 | 3
0.19 | 17.85 | 10.23 | 578.88 | 4.25 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar
)
|
| MobileNetV2_
<br>
x0_25 | 0.5321 | 0.7652 | 3.
46 | 2.51 | 2.03 | 34.18 | 1.53 | 6.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_25_infer.tar
)
|
| MobileNetV2_
<br>
x0_5 | 0.6503 | 0.8572 |
7.69 | 4.92 | 3.57 | 99.48 | 1.98 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_5_infer.tar
)
|
| MobileNetV2_
<br>
x0_75 | 0.6983 | 0.8901 | 1
3.69 | 8.60 | 5.82 | 197.37 | 2.65 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_75_infer.tar
)
|
| MobileNetV2 | 0.7215 | 0.9065 | 2
0.74 | 12.71 | 8.10 | 327.84 | 3.54 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_infer.tar
)
|
| MobileNetV2_
<br>
x1_5 | 0.7412 | 0.9167 | 4
0.79 | 24.49 | 15.50 | 702.35 | 6.90 | 26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x1_5_infer.tar
)
|
| MobileNetV2_
<br>
x2_0 | 0.7523 | 0.9258 |
67.50 | 40.03 | 25.55 | 1217.25 | 11.33 | 43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x2_0_infer.tar
)
|
| MobileNetV2_
<br>
ssld | 0.7674 | 0.9339 | 2
0.71 | 12.70 | 8.06 | 327.84 | 3.54 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar
)
|
| MobileNetV3_
<br>
large_x1_25 | 0.7641 | 0.9295 | 2
4.52 | 14.76 | 9.89 | 362.70 | 7.47 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_25_infer.tar
)
|
| MobileNetV3_
<br>
large_x1_0 | 0.7532 | 0.9231 | 1
6.55 | 10.09 | 6.84 | 229.66 | 5.50 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
)
|
| MobileNetV3_
<br>
large_x0_75 | 0.7314 | 0.9108 | 1
1.53 | 7.06 | 4.94 | 151.70 | 3.93 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_75_infer.tar
)
|
| MobileNetV3_
<br>
large_x0_5 | 0.6924 | 0.8852 |
6.50 | 4.22 | 3.15 | 71.83 | 2.69 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_5_infer.tar
)
|
| MobileNetV3_
<br>
large_x0_35 | 0.6432 | 0.8546 |
4.43 | 3.11 | 2.41 | 40.90 | 2.11 | 8.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_35_infer.tar
)
|
| MobileNetV3_
<br>
small_x1_25 | 0.7067 | 0.8951 |
7.88 | 4.91 | 3.45 | 100.07 | 3.64 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_25_infer.tar
)
|
| MobileNetV3_
<br>
small_x1_0 | 0.6824 | 0.8806 |
5.63 | 3.65 | 2.60 | 63.67 | 2.95 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_infer.tar
)
|
| MobileNetV3_
<br>
small_x0_75 | 0.6602 | 0.8633 |
4.50 | 2.96 | 2.19 | 46.02 | 2.38 | 9.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_75_infer.tar
)
|
| MobileNetV3_
<br>
small_x0_5 | 0.5921 | 0.8152 |
2.89 | 2.04 | 1.62 | 22.60 | 1.91 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_5_infer.tar
)
|
| MobileNetV3_
<br>
small_x0_35 | 0.5303 | 0.7637 | 2.
23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_infer.tar
)
|
| MobileNetV3_
<br>
small_x0_35_ssld | 0.5555 | 0.7771 |
| | | 14.56 | 1.67 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
|
| MobileNetV3_
<br>
large_x1_0_ssld | 0.7896 | 0.9448 | 1
6.56 | 10.10 | 6.86 | 229.66 | 5.50 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
|
| MobileNetV3_small_
<br>
x1_0_ssld | 0.7129 | 0.9010 |
5.64 | 3.67 | 2.61 | 63.67 | 2.95 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
|
| ShuffleNetV2 | 0.6880 | 0.8845 |
9.72 | 5.97 | 4.13 | 148.86 | 2.29 | 9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_0_infer.tar
)
|
| ShuffleNetV2_
<br>
x0_25 | 0.4990 | 0.7379 |
1.94 | 1.53 | 1.43 | 18.95 | 0.61 | 2.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_25_infer.tar
)
|
| ShuffleNetV2_
<br>
x0_33 | 0.5373 | 0.7705 | 2.
23 | 1.70 | 1.79 | 24.04 | 0.65 | 2.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_33_infer.tar
)
|
| ShuffleNetV2_
<br>
x0_5 | 0.6032 | 0.8226 |
3.67 | 2.63 | 2.06 | 42.58 | 1.37 | 5.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_5_infer.tar
)
|
| ShuffleNetV2_
<br>
x1_5 | 0.7163 | 0.9015 | 1
7.21 | 10.56 | 6.81 | 301.35 | 3.53 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_5_infer.tar
)
|
| ShuffleNetV2_
<br>
x2_0 | 0.7315 | 0.9120 | 3
1.21 | 18.98 | 11.65 | 571.70 | 7.40 | 28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x2_0_infer.tar
)
|
| ShuffleNetV2_
<br>
swish | 0.7003 | 0.8917 |
31.21 | 9.06 | 5.74 | 148.86 | 2.29 | 9.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_swish_infer.tar
)
|
| GhostNet_
<br>
x0_5 | 0.6688 | 0.8695 | 5.
28 | 3.95 | 3.29 | 46.15 | 2.60 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x0_5_infer.tar
)
|
| GhostNet_
<br>
x1_0 | 0.7402 | 0.9165 | 1
2.89 | 8.66 | 6.72 | 148.78 | 5.21 | 20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_0_infer.tar
)
|
| GhostNet_
<br>
x1_3 | 0.7579 | 0.9254 | 19.
16 | 12.25 | 9.40 | 236.89 | 7.38 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_infer.tar
)
|
| GhostNet_
<br>
x1_3_ssld | 0.7938 | 0.9449 | 19.
16 | 17.85 | 10.18 | 236.89 | 7.38 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar
)
|
| ESNet_x0_25 |
0.6248 | 0.8346 |4.12|2.97|2.51| 30.85 | 2.83 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_25_infer.tar
)
|
| ESNet_x0_5 |
0.6882 | 0.8804 |6.45|4.42|3.35| 67.31 | 3.25 | 13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_5_infer.tar
)
|
| ESNet_x0_75 |
0.7224 | 0.9045 |9.59|6.28|4.52| 123.74 | 3.87 | 15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_75_infer.tar
)
|
| ESNet_x1_0 |
0.7392 | 0.9140 |13.67|8.71|5.97| 197.33 | 4.64 | 18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x1_0_infer.tar
)
|
<a
name=
"6"
></a>
...
...
@@ -199,33 +199,33 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关
SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
SEResNeXt 与 Res2Net 系列模型文档
](
../models/SEResNext_and_Res2Net.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 |
4.47188 | 9.65722 | 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 |
4.52712 | 9.93247 | 4.52 | 25.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 |
5.4026 | 10.60273 | 4.20 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams
)
|
| Res2Net101_vd_
<br>
26w_4s | 0.8064 | 0.9522 |
8.08729 | 17.31208 | 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s | 0.8121 | 0.9571 | 1
4.67806 | 32.35032 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.8513 | 0.9742 | 1
4.67806 | 32.35032 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 |
7.56327 | 10.6134 | 4.26 | 25.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 |
7.62044 | 11.03385 | 4.50 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 |
13.80962 | 18.4712 | 8.02 | 45.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 |
13.94449 | 18.88759 | 8.26 | 45.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 | 1
6.21503 | 19.96568 | 8.01 | 44.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 | 1
6.28103 | 20.25611 | 8.25 | 44.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 |
30.4788 | 36.29801 | 15.52 | 83.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 |
30.40456 | 36.77324 | 15.76 | 83.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 |
24.86299 | 29.36764 | 11.76 | 60.15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 |
25.03258 | 30.08987 | 12.01 | 60.17 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 |
46.7564 | 56.34108 | 23.03 | 115.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 |
47.18638 | 57.16257 | 23.27 | 115.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.
7691 | 4.19877 | 2.07 | 11.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.
88559 | 7.03291 | 3.93 | 22.00 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 |
4.28393 | 10.38846 | 4.36 | 28.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 |
8.74121 | 13.563 | 4.27 | 27.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 |
9.17134 | 14.76192 | 5.64 | 27.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7939 | 0.9443 | 1
8.82604 | 25.31814 | 8.03 | 49.09 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams
)
|
| SENet154_vd | 0.8140 | 0.9548 |
53.79794 | 66.31684 | 24.45 | 122.03 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 |
3.52 | 6.23 | 9.30 | 4.28 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 |
3.59 | 6.35 | 9.50 | 4.52 | 25.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 |
4.39 | 7.21 | 10.38 | 4.20 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar
)
|
| Res2Net101_vd_
<br>
26w_4s | 0.8064 | 0.9522 |
6.34 | 11.02 | 16.13 | 8.35 | 45.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s | 0.8121 | 0.9571 | 1
1.45 | 19.77 | 28.81 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_infer.tar
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.8513 | 0.9742 | 1
1.47 | 19.75 | 28.83 | 15.77 | 76.44 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar
)
|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 |
5.07 | 8.49 | 12.02 | 4.26 | 25.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 |
5.29 | 8.68 | 12.33 | 4.50 | 25.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 |
9.39 | 13.97 | 20.56 | 8.02 | 45.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 |
9.75 | 14.14 | 20.84 | 8.26 | 45.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 | 1
1.34 | 16.78 | 22.80 | 8.01 | 44.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 | 1
1.36 | 17.01 | 23.07 | 8.25 | 44.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 |
21.57 | 28.08 | 39.49 | 15.52 | 83.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 |
21.57 | 28.22 | 39.70 | 15.76 | 83.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 |
17.14 | 25.11 | 33.79 | 11.76 | 60.15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 |
16.99 | 25.29 | 33.85 | 12.01 | 60.17 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 |
33.07 | 42.05 | 59.13 | 23.03 | 115.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 |
33.30 | 42.41 | 59.42 | 23.27 | 115.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.
48 | 2.70 | 4.32 | 2.07 | 11.81 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.
42 | 3.69 | 6.29 | 3.93 | 22.00 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 |
3.11 | 5.99 | 9.34 | 4.36 | 28.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 |
6.39 | 11.01 | 14.94 | 4.27 | 27.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 |
7.04 | 11.57 | 16.01 | 5.64 | 27.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7939 | 0.9443 | 1
3.31 | 21.85 | 28.77 | 8.03 | 49.09 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar
)
|
| SENet154_vd | 0.8140 | 0.9548 |
34.83 | 51.22 | 69.74 | 24.45 | 122.03 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar
)
|
<a
name=
"7"
></a>
...
...
@@ -234,18 +234,18 @@ SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更
DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
DPN 与 DenseNet 系列模型文档
](
../models/DPN_DenseNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
| DenseNet121 | 0.7566 | 0.9258 |
4.40447 | 9.32623 | 2.87 | 8.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams
)
|
| DenseNet161 | 0.7857 | 0.9414 |
10.39152 | 22.15555 | 7.79 | 28.90 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams
)
|
| DenseNet169 | 0.7681 | 0.9331 |
6.43598 | 12.98832 | 3.40 | 14.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams
)
|
| DenseNet201 | 0.7763 | 0.9366 |
8.20652 | 17.45838 | 4.34 | 20.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams
)
|
| DenseNet264 | 0.7796 | 0.9385 |
12.14722 | 26.27707 | 5.82 | 33.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams
)
|
| DPN68 | 0.7678 | 0.9343 |
11.64915 | 12.82807 | 2.35 | 12.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams
)
|
| DPN92 | 0.7985 | 0.9480 | 1
8.15746 | 23.87545 | 6.54 | 37.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams
)
|
| DPN98 | 0.8059 | 0.9510 |
21.18196 | 33.23925 | 11.728 | 61.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams
)
|
| DPN107 | 0.8089 | 0.9532 |
27.62046 | 52.65353 | 18.38 | 87.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams
)
|
| DPN131 | 0.8070 | 0.9514 |
28.33119 | 46.19439 | 16.09 | 79.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
-------------|-------------|
| DenseNet121 | 0.7566 | 0.9258 |
3.40 | 6.94 | 9.17 | 2.87 | 8.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar
)
|
| DenseNet161 | 0.7857 | 0.9414 |
7.06 | 14.37 | 19.55 | 7.79 | 28.90 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar
)
|
| DenseNet169 | 0.7681 | 0.9331 |
5.00 | 10.29 | 12.84 | 3.40 | 14.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar
)
|
| DenseNet201 | 0.7763 | 0.9366 |
6.38 | 13.72 | 17.17 | 4.34 | 20.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar
)
|
| DenseNet264 | 0.7796 | 0.9385 |
9.34 | 20.95 | 25.41 | 5.82 | 33.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar
)
|
| DPN68 | 0.7678 | 0.9343 |
8.18 | 11.40 | 14.82 | 2.35 | 12.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar
)
|
| DPN92 | 0.7985 | 0.9480 | 1
2.48 | 20.04 | 25.10 | 6.54 | 37.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar
)
|
| DPN98 | 0.8059 | 0.9510 |
14.70 | 25.55 | 35.12 | 11.728 | 61.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar
)
|
| DPN107 | 0.8089 | 0.9532 |
19.46 | 35.62 | 50.22 | 18.38 | 87.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar
)
|
| DPN131 | 0.8070 | 0.9514 |
19.64 | 34.60 | 47.42 | 16.09 | 79.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar
)
|
...
...
@@ -256,18 +256,18 @@ DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关
HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
HRNet 系列模型文档
](
../models/HRNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692 | 0.9339 |
7.40636 | 13.29752 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
)
|
| HRNet_W18_C_ssld | 0.81162 | 0.95804 |
7.40636 | 13.29752 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
| HRNet_W30_C | 0.7804 | 0.9402 |
9.57594 | 17.35485 | 8.15 | 37.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams
)
|
| HRNet_W32_C | 0.7828 | 0.9424 |
9.49807 | 17.72921 | 8.97 | 41.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams
)
|
| HRNet_W40_C | 0.7877 | 0.9447 |
12.12202 | 25.68184 | 12.74 | 57.64 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 1
3.19858 | 32.25202 | 14.94 | 67.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 1
3.70761 | 34.43572 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams
)
|
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 1
3.70761 | 34.43572 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 1
7.57527 | 47.9533 | 28.97 | 128.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams
)
|
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 |
31.69770 | 94.99546 | 29.00 | 129.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692 | 0.9339 |
6.66 | 8.94 | 11.95 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar
)
|
| HRNet_W18_C_ssld | 0.81162 | 0.95804 |
6.66 | 8.92 | 11.93 | 4.32 | 21.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar
)
|
| HRNet_W30_C | 0.7804 | 0.9402 |
8.61 | 11.40 | 15.23 | 8.15 | 37.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar
)
|
| HRNet_W32_C | 0.7828 | 0.9424 |
8.54 | 11.58 | 15.57 | 8.97 | 41.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar
)
|
| HRNet_W40_C | 0.7877 | 0.9447 |
9.83 | 15.02 | 20.92 | 12.74 | 57.64 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 1
0.62 | 16.18 | 25.92 | 14.94 | 67.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 1
1.07 | 17.06 | 27.28 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar
)
|
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 1
1.09 | 17.04 | 27.28 | 17.34 | 77.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 1
3.82 | 21.15 | 35.51 | 28.97 | 128.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar
)
|
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 |
17.11 | 26.87 | 43.24 | 29.00 | 129.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar
)
|
<a
name=
"9"
></a>
...
...
@@ -275,16 +275,16 @@ HRNet 系列模型的精度、速度指标如下表所示,更多关于该系
Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
Inception 系列模型文档
](
../models/Inception.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
| GoogLeNet | 0.7070 | 0.8966 | 1.
88038 | 4.48882 | 1.44 | 11.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
|
| Xception41 | 0.7930 | 0.9453 |
4.96939 | 17.01361 | 8.57 | 23.02 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams
)
|
| Xception41_deeplab | 0.7955 | 0.9438 |
5.33541 | 17.55938 | 9.28 | 27.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams
)
|
| Xception65 | 0.8100 | 0.9549 |
7.26158 | 25.88778 | 13.25 | 36.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams
)
|
| Xception65_deeplab | 0.8032 | 0.9449 |
7.60208 | 26.03699 | 13.96 | 40.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams
)
|
| Xception71 | 0.8111 | 0.9545 |
8.72457 | 31.55549 | 16.21 | 37.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams
)
|
| InceptionV3 | 0.7914 | 0.9459 |
6.64054 | 13.53630 | 5.73 | 23.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams
)
|
| InceptionV4 | 0.8077 | 0.9526 |
12.99342 | 25.23416 | 12.29 | 42.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| GoogLeNet | 0.7070 | 0.8966 | 1.
41 | 3.25 | 5.00 | 1.44 | 11.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar
)
|
| Xception41 | 0.7930 | 0.9453 |
3.58 | 8.76 | 16.61 | 8.57 | 23.02 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar
)
|
| Xception41_deeplab | 0.7955 | 0.9438 |
3.81 | 9.16 | 17.20 | 9.28 | 27.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar
)
|
| Xception65 | 0.8100 | 0.9549 |
5.45 | 12.78 | 24.53 | 13.25 | 36.04 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar
)
|
| Xception65_deeplab | 0.8032 | 0.9449 |
5.65 | 13.08 | 24.61 | 13.96 | 40.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar
)
|
| Xception71 | 0.8111 | 0.9545 |
6.19 | 15.34 | 29.21 | 16.21 | 37.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar
)
|
| InceptionV3 | 0.7914 | 0.9459 |
4.78 | 8.53 | 12.28 | 5.73 | 23.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar
)
|
| InceptionV4 | 0.8077 | 0.9526 |
8.93 | 15.17 | 21.56 | 12.29 | 42.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar
)
|
<a
name=
"10"
></a>
...
...
@@ -293,22 +293,22 @@ Inception 系列模型的精度、速度指标如下表所示,更多关于该
EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
EfficientNet 与 ResNeXt101_wsl 系列模型文档
](
../models/EfficientNet_and_ResNeXt101_wsl.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_
<br>
32x8d_wsl | 0.8255 | 0.9674 | 1
8.52528 | 34.25319 | 16.48 | 88.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x16d_wsl | 0.8424 | 0.9726 | 2
5.60395 | 71.88384 | 36.26 | 194.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x32d_wsl | 0.8497 | 0.9759 |
54.87396 | 160.04337 | 87.28 | 469.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x48d_wsl | 0.8537 | 0.9769 |
99.01698256 | 315.91261 | 153.57 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 0.8626 | 0.9797 |
160.0838242 | 595.99296 | 313.41 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
| EfficientNetB0 | 0.7738 | 0.9331 |
3.442 | 6.11476 | 0.40 | 5.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams
)
|
| EfficientNetB1 | 0.7915 | 0.9441 |
5.3322 | 9.41795 | 0.71 | 7.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams
)
|
| EfficientNetB2 | 0.7985 | 0.9474 |
6.29351 | 10.95702 | 1.02 | 9.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams
)
|
| EfficientNetB3 | 0.8115 | 0.9541 |
7.67749 | 16.53288 | 1.88 | 12.324 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams
)
|
| EfficientNetB4 | 0.8285 | 0.9623 |
12.15894 | 30.94567 | 4.51 | 19.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams
)
|
| EfficientNetB5 | 0.8362 | 0.9672 |
20.48571 | 61.60252 | 10.51 | 30.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams
)
|
| EfficientNetB6 | 0.8400 | 0.9688 |
32.62402 | - | 19.47 | 43.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams
)
|
| EfficientNetB7 | 0.8430 | 0.9689 |
53.93823 | - | 38.45 | 66.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams
)
|
| EfficientNetB0_
<br>
small | 0.7580 | 0.9258 |
2.3076 | 4.71886 | 0.40 | 4.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型
|
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_
<br>
32x8d_wsl | 0.8255 | 0.9674 | 1
3.55 | 23.39 | 36.18 | 16.48 | 88.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x16d_wsl | 0.8424 | 0.9726 | 2
1.96 | 38.35 | 63.29 | 36.26 | 194.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x32d_wsl | 0.8497 | 0.9759 |
37.28 | 76.50 | 121.56 | 87.28 | 469.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar
)
|
| ResNeXt101_
<br>
32x48d_wsl | 0.8537 | 0.9769 |
55.07 | 124.39 | 205.01 | 153.57 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar
)
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 0.8626 | 0.9797 |
55.01 | 122.63 | 204.66 | 313.41 | 829.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Fix_ResNeXt101_32x48d_wsl_infer.tar
)
|
| EfficientNetB0 | 0.7738 | 0.9331 |
1.96 | 3.71 | 5.56 | 0.40 | 5.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar
)
|
| EfficientNetB1 | 0.7915 | 0.9441 |
2.88 | 5.40 | 7.63 | 0.71 | 7.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar
)
|
| EfficientNetB2 | 0.7985 | 0.9474 |
3.26 | 6.20 | 9.17 | 1.02 | 9.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar
)
|
| EfficientNetB3 | 0.8115 | 0.9541 |
4.52 | 8.85 | 13.54 | 1.88 | 12.324 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar
)
|
| EfficientNetB4 | 0.8285 | 0.9623 |
6.78 | 15.47 | 24.95 | 4.51 | 19.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar
)
|
| EfficientNetB5 | 0.8362 | 0.9672 |
10.97 | 27.24 | 45.93 | 10.51 | 30.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar
)
|
| EfficientNetB6 | 0.8400 | 0.9688 |
17.09 | 43.32 | 76.90 | 19.47 | 43.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar
)
|
| EfficientNetB7 | 0.8430 | 0.9689 |
25.91 | 71.23 | 128.20 | 38.45 | 66.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar
)
|
| EfficientNetB0_
<br>
small | 0.7580 | 0.9258 |
1.24 | 2.59 | 3.92 | 0.40 | 4.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar
)
|
<a
name=
"11"
></a>
...
...
@@ -317,11 +317,11 @@ EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所
ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
ResNeSt 与 RegNet 系列模型文档
](
../models/ResNeSt_RegNet.md
)
。
| 模型
| Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 下载地址
|
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8035 | 0.9528 |
3.45405 | 8.72680 | 4.36 | 26.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
| ResNeSt50 | 0.8083 | 0.9542 |
6.69042 | 8.01664 | 5.40 | 27.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
| RegNetX_4GF | 0.785 | 0.9416 |
6.46478 | 11.19862 | 4.00 | 22.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams
)
|
| 模型
| Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8035 | 0.9528 |
2.73 | 5.33 | 8.24 | 4.36 | 26.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar
)
|
| ResNeSt50 | 0.8083 | 0.9542 |
7.36 | 10.23 | 13.84 | 5.40 | 27.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar
)
|
| RegNetX_4GF | 0.785 | 0.9416 |
6.46 | 8.48 | 11.45 | 4.00 | 22.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar
)
|
<a
name=
"12"
></a>
...
...
@@ -337,10 +337,8 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 | - | - | 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 | - | - | 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 | - | - | 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch16_384 | 0.8513 | 0.9736 | - | - | 174.70 | 304.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch32_384 | 0.8153 | 0.9608 | - | - | 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
|ViT_large_
<br/>
patch16_384| 0.8513 | 0.9736 | - | - | 174.70 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
|ViT_large_
<br/>
patch32_384| 0.8153 | 0.9608 | - | - | 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
...
...
@@ -381,11 +379,11 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
MixNet 系列模型文档
](
../models/MixNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(M) | Params(M) | 下载地址
|
| -------- | --------- | --------- | ---------------- | ---------------- | --------
|
--------- | ------------------------------------------------------------ |
| MixNet_S | 0.7628 | 0.9299 |
| | 252.977 | 4.167 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams
)
|
| MixNet_M | 0.7767 | 0.9364 |
| | 357.119 | 5.065 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams
)
|
| MixNet_L | 0.7860 | 0.9437 |
| | 579.017 | 7.384 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
| -------- | --------- | --------- | ---------------- | ---------------- | --------
--------- | -------- | --------- | ---------------------------------------------------
--------- | ------------------------------------------------------------ |
| MixNet_S | 0.7628 | 0.9299 |
2.31 | 3.63 | 5.20 | 252.977 | 4.167 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar
)
|
| MixNet_M | 0.7767 | 0.9364 |
2.84 | 4.60 | 6.62 | 357.119 | 5.065 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar
)
|
| MixNet_L | 0.7860 | 0.9437 |
3.16 | 5.55 | 8.03 | 579.017 | 7.384 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar
)
|
<a
name=
"15"
></a>
...
...
@@ -393,13 +391,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
ReXNet 系列模型文档
](
../models/ReXNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746 | 0.9370 |
| | 0.415 | 4.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams
)
|
| ReXNet_1_3 | 0.7913 | 0.9464 |
| | 0.68 | 7.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams
)
|
| ReXNet_1_5 | 0.8006 | 0.9512 |
| | 0.90 | 9.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams
)
|
| ReXNet_2_0 | 0.8122 | 0.9536 |
| | 1.56 | 16.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams
)
|
| ReXNet_3_0 | 0.8209 | 0.9612 |
| | 3.44 | 34.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
------------------------------------------------------------ | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746 | 0.9370 |
3.08 | 4.15 | 5.49 | 0.415 | 4.84 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar
)
|
| ReXNet_1_3 | 0.7913 | 0.9464 |
3.54 | 4.87 | 6.54 | 0.68 | 7.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar
)
|
| ReXNet_1_5 | 0.8006 | 0.9512 |
3.68 | 5.31 | 7.38 | 0.90 | 9.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar
)
|
| ReXNet_2_0 | 0.8122 | 0.9536 |
4.30 | 6.54 | 9.19 | 1.56 | 16.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar
)
|
| ReXNet_3_0 | 0.8209 | 0.9612 |
5.74 | 9.49 | 13.62 | 3.44 | 34.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar
)
|
<a
name=
"16"
></a>
...
...
@@ -459,12 +457,12 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
HarDNet 系列模型文档
](
../models/HarDNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133 |0.8998 |
| | 0.44 | 3.51 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams
)
|
| HarDNet68_ds |0.7362 | 0.9152 |
| | 0.79 | 4.20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams
)
|
| HarDNet68| 0.7546 | 0.9265 |
| | 4.26 | 17.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams
)
|
| HarDNet85 | 0.7744 | 0.9355 |
| | 9.09 | 36.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
------------------------------------------------------------ | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133 |0.8998 |
1.40 | 2.30 | 3.33 | 0.44 | 3.51 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar
)
|
| HarDNet68_ds |0.7362 | 0.9152 |
2.26 | 3.34 | 5.06 | 0.79 | 4.20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar
)
|
| HarDNet68| 0.7546 | 0.9265 |
3.58 | 8.53 | 11.58 | 4.26 | 17.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar
)
|
| HarDNet85 | 0.7744 | 0.9355 |
6.24 | 14.85 | 20.57 | 9.09 | 36.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar
)
|
<a
name=
"20"
></a>
...
...
@@ -472,17 +470,17 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
DLA 系列模型文档
](
../models/DLA.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| DLA102 | 0.7893 |0.9452 |
| | 7.19 | 33.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams
)
|
| DLA102x2 |0.7885 | 0.9445 |
| | 9.34 | 41.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams
)
|
| DLA102x| 0.781 | 0.9400 |
| | 5.89 | 26.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams
)
|
| DLA169 | 0.7809 | 0.9409 |
| | 11.59 | 53.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams
)
|
| DLA34 | 0.7603 | 0.9298 |
| | 3.07 | 15.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams
)
|
| DLA46_c |0.6321 | 0.853 |
| | 0.54 | 1.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams
)
|
| DLA60 | 0.7610 | 0.9292 |
| | 4.26 | 22.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams
)
|
| DLA60x_c | 0.6645 | 0.8754 |
| | 0.59 | 1.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams
)
|
| DLA60x | 0.7753 | 0.9378 |
| | 3.54 | 17.41 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
------------------------------------------------------------ | ------------------------------------------------------------ |
| DLA102 | 0.7893 |0.9452 |
4.95 | 8.08 | 12.40 | 7.19 | 33.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar
)
|
| DLA102x2 |0.7885 | 0.9445 |
19.58 | 23.97 | 31.37 | 9.34 | 41.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar
)
|
| DLA102x| 0.781 | 0.9400 |
11.12 | 15.60 | 20.37 | 5.89 | 26.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar
)
|
| DLA169 | 0.7809 | 0.9409 |
7.70 | 12.25 | 18.90 | 11.59 | 53.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar
)
|
| DLA34 | 0.7603 | 0.9298 |
1.83 | 3.37 | 5.98 | 3.07 | 15.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar
)
|
| DLA46_c |0.6321 | 0.853 |
1.06 | 2.08 | 3.23 | 0.54 | 1.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar
)
|
| DLA60 | 0.7610 | 0.9292 |
2.78 | 5.36 | 8.29 | 4.26 | 22.08 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar
)
|
| DLA60x_c | 0.6645 | 0.8754 |
1.79 | 3.68 | 5.19 | 0.59 | 1.33 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar
)
|
| DLA60x | 0.7753 | 0.9378 |
5.98 | 9.24 | 12.52 | 3.54 | 17.41 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar
)
|
<a
name=
"21"
></a>
...
...
@@ -490,13 +488,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
RedNet 系列模型文档
](
../models/RedNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) | 下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| RedNet26 | 0.7595 |0.9319 |
| | 1.69 | 9.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams
)
|
| RedNet38 |0.7747 | 0.9356 |
| | 2.14 | 12.43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams
)
|
| RedNet50| 0.7833 | 0.9417 |
| | 2.61 | 15.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams
)
|
| RedNet101 | 0.7894 | 0.9436 |
| | 4.59 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams
)
|
| RedNet152 | 0.7917 | 0.9440 |
| | 6.57 | 34.14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址
|
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
------------------------------------------------------------ | ------------------------------------------------------------ |
| RedNet26 | 0.7595 |0.9319 |
4.45 | 15.16 | 29.03 | 1.69 | 9.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar
)
|
| RedNet38 |0.7747 | 0.9356 |
6.24 | 21.39 | 41.26 | 2.14 | 12.43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar
)
|
| RedNet50| 0.7833 | 0.9417 |
8.04 | 27.71 | 53.73 | 2.61 | 15.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar
)
|
| RedNet101 | 0.7894 | 0.9436 |
13.07 | 44.12 | 83.28 | 4.59 | 25.76 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar
)
|
| RedNet152 | 0.7917 | 0.9440 |
18.66 | 63.27 | 119.48 | 6.57 | 34.14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar
)
|
<a
name=
"22"
></a>
...
...
@@ -517,13 +515,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 AlexNet、SqueezeNet 系列、VGG 系列、DarkNet53 等模型的精度、速度指标如下表所示,更多介绍可以参考:
[
其他模型文档
](
../models/Others.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
FLOPs(G) | Params(M) |
下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| AlexNet | 0.567 | 0.792 |
1.44993 | 2.46696 | 0.71 | 61.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams
)
|
| SqueezeNet1_0 | 0.596 | 0.817 | 0.
96736 | 2.53221 | 0.78 | 1.25 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
|
| SqueezeNet1_1 | 0.601 | 0.819 | 0.
76032 | 1.877 | 0.35 | 1.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
|
| VGG11 | 0.693 | 0.891 |
3.90412 | 9.51147 | 7.61 | 132.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams
)
|
| VGG13 | 0.700 | 0.894 |
4.64684 | 12.61558 | 11.31 | 133.05 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams
)
|
| VGG16 | 0.720 | 0.907 |
5.61769 | 16.40064 | 15.470 | 138.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams
)
|
| VGG19 | 0.726 | 0.909 |
6.65221 | 20.4334 | 19.63 | 143.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams
)
|
| DarkNet53 | 0.780 | 0.941 |
4.10829 | 12.1714 | 9.31 | 41.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预备训练下载地址 | inference模型
下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| AlexNet | 0.567 | 0.792 |
0.81 | 1.50 | 2.33 | 0.71 | 61.10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar
)
|
| SqueezeNet1_0 | 0.596 | 0.817 | 0.
68 | 1.64 | 2.62 | 0.78 | 1.25 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_0_infer.tar
)
|
| SqueezeNet1_1 | 0.601 | 0.819 | 0.
62 | 1.30 | 2.09 | 0.35 | 1.24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_1_infer.tar
)
|
| VGG11 | 0.693 | 0.891 |
1.72 | 4.15 | 7.24 | 7.61 | 132.86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar
)
|
| VGG13 | 0.700 | 0.894 |
2.02 | 5.28 | 9.54 | 11.31 | 133.05 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar
)
|
| VGG16 | 0.720 | 0.907 |
2.48 | 6.79 | 12.33 | 15.470 | 138.35 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar
)
|
| VGG19 | 0.726 | 0.909 |
2.93 | 8.28 | 15.21 | 19.63 | 143.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar
)
|
| DarkNet53 | 0.780 | 0.941 |
2.79 | 6.42 | 10.89 | 9.31 | 41.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar
)
|
docs/zh_CN/models/DLA.md
浏览文件 @
a1ad2c89
...
...
@@ -3,6 +3,7 @@
## 目录
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
...
...
@@ -25,4 +26,20 @@ DLA(Deep Layer Aggregation)。 视觉识别需要丰富的表示形式,其范
| DLA102 | 33.3 | 7.2 | 78.93 | 94.52 |
| DLA102x | 26.4 | 5.9 | 78.10 | 94.00 |
| DLA102x2 | 41.4 | 9.3 | 78.85 | 94.45 |
| DLA169 | 53.5 | 11.6 | 78.09 | 94.09 |
\ No newline at end of file
| DLA169 | 53.5 | 11.6 | 78.09 | 94.09 |
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| 模型 | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| -------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| DLA102 | 224 | 256 | 4.95 | 8.08 | 12.40 |
| DLA102x2 | 224 | 256 | 19.58 | 23.97 | 31.37 |
| DLA102x | 224 | 256 | 11.12 | 15.60 | 20.37 |
| DLA169 | 224 | 256 | 7.70 | 12.25 | 18.90 |
| DLA34 | 224 | 256 | 1.83 | 3.37 | 5.98 |
| DLA46_c | 224 | 256 | 1.06 | 2.08 | 3.23 |
| DLA60 | 224 | 256 | 2.78 | 5.36 | 8.29 |
| DLA60x_c | 224 | 256 | 1.79 | 3.68 | 5.19 |
| DLA60x | 224 | 256 | 5.98 | 9.24 | 12.52 |
\ No newline at end of file
docs/zh_CN/models/DPN_DenseNet.md
浏览文件 @
a1ad2c89
...
...
@@ -12,7 +12,7 @@
## 1. 概述
DenseNet 是 2017 年 CVPR best paper 提出的一种新的网络结构,该网络设计了一种新的跨层连接的 block,即 dense-block。相比 ResNet 中的 bottleneck,dense-block 设计了一个更激进的密集连接机制,即互相连接所有的层,每个层都会接受其前面所有层作为其额外的输入。DenseNet 将所有的 dense-block 堆叠,组合成了一个密集连接型网络。密集的连接方式使得 DenseNe 更容易进行梯度的反向传播,使得网络更容易训练。
DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 DenseNet 和 ResNeXt 结合的一个网络,其证明了 DenseNet 能从靠前的层级中提取到新的特征,而 ResNeXt 本质上是对之前层级中已提取特征的复用。作者进一步分析发现,ResNeXt 对特征有高复用率,但冗余度低,DenseNet 能创造新特征,但冗余度高。结合二者结构的优势,作者设计了 DPN 网络。最终 DPN 网络在同样 FLOPS 和参数量下,取得了比 ResNeXt 与 DenseNet 更好的结果。
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](
../../images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png
)
...
...
@@ -48,18 +48,18 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br
>
Batch Size=1
<br
>
(ms) |
|-------------|-----------|-------------------|--------------------------|
| DenseNet121 | 224 | 256 |
4.371
|
| DenseNet161 | 224 | 256 |
8.863
|
| DenseNet169 | 224 | 256 |
6.391
|
| DenseNet201 | 224 | 256 |
8.173
|
| DenseNet264 | 224 | 256 |
11.942
|
| DPN68 | 224 | 256 |
11.805
|
| DPN92 | 224 | 256 | 1
7.840
|
| DPN98 | 224 | 256 |
21.057
|
| DPN107 | 224 | 256 |
28.685
|
| DPN131 | 224 | 256 |
28.083
|
| Models | Crop Size | Resize Short Size | FP32
<br
/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/
>
(ms) |
|-------------|-----------|-------------------|-------------------
|-------------------|------------
-------|
| DenseNet121 | 224 | 256 |
3.40 | 6.94 | 9.17
|
| DenseNet161 | 224 | 256 |
7.06 | 14.37 | 19.55
|
| DenseNet169 | 224 | 256 |
5.00 | 10.29 | 12.84
|
| DenseNet201 | 224 | 256 |
6.38 | 13.72 | 17.17
|
| DenseNet264 | 224 | 256 |
9.34 | 20.95 | 25.41
|
| DPN68 | 224 | 256 |
8.18 | 11.40 | 14.82
|
| DPN92 | 224 | 256 | 1
2.48 | 20.04 | 25.10
|
| DPN98 | 224 | 256 |
14.70 | 25.55 | 35.12
|
| DPN107 | 224 | 256 |
19.46 | 35.62 | 50.22
|
| DPN131 | 224 | 256 |
19.64 | 34.60 | 47.42
|
<a
name=
'4'
></a>
...
...
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
浏览文件 @
a1ad2c89
...
...
@@ -50,22 +50,22 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br
>
Batch Size=1
<br
>
(ms) |
|-------------------------------|-----------|-------------------|--------------------------|
| ResNeXt101_
<br>
32x8d_wsl | 224 | 256 | 1
9.127
|
| ResNeXt101_
<br>
32x16d_wsl | 224 | 256 | 2
3.629
|
| ResNeXt101_
<br>
32x32d_wsl | 224 | 256 |
40.214
|
| ResNeXt101_
<br>
32x48d_wsl | 224 | 256 | 5
9.714
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 320 | 320 |
82.431
|
| EfficientNetB0 | 224 | 256 |
2.449
|
| EfficientNetB1 | 240 | 272 |
3.547
|
| EfficientNetB2 | 260 | 292 | 3.
908
|
| EfficientNetB3 | 300 | 332 |
5.145
|
| EfficientNetB4 | 380 | 412 |
7.609
|
| EfficientNetB5 | 456 | 488 | 1
2.078
|
| EfficientNetB6 | 528 | 560 | 1
8.381
|
| EfficientNetB7 | 600 | 632 | 2
7.817
|
| EfficientNetB0_
<br>
small | 224 | 256 | 1.
692
|
| Models | Crop Size | Resize Short Size | FP32
<br
/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/
>
(ms) |
|-------------------------------|-----------|-------------------|--------------------------
-----|-------------------------------|-------------------------------
|
| ResNeXt101_
<br>
32x8d_wsl | 224 | 256 | 1
3.55 | 23.39 | 36.18
|
| ResNeXt101_
<br>
32x16d_wsl | 224 | 256 | 2
1.96 | 38.35 | 63.29
|
| ResNeXt101_
<br>
32x32d_wsl | 224 | 256 |
37.28 | 76.50 | 121.56
|
| ResNeXt101_
<br>
32x48d_wsl | 224 | 256 | 5
5.07 | 124.39 | 205.01
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 320 | 320 |
55.01 | 122.63 | 204.66
|
| EfficientNetB0 | 224 | 256 |
1.96 | 3.71 | 5.56
|
| EfficientNetB1 | 240 | 272 |
2.88 | 5.40 | 7.63
|
| EfficientNetB2 | 260 | 292 | 3.
26 | 6.20 | 9.17
|
| EfficientNetB3 | 300 | 332 |
4.52 | 8.85 | 13.54
|
| EfficientNetB4 | 380 | 412 |
6.78 | 15.47 | 24.95
|
| EfficientNetB5 | 456 | 488 | 1
0.97 | 27.24 | 45.93
|
| EfficientNetB6 | 528 | 560 | 1
7.09 | 43.32 | 76.90
|
| EfficientNetB7 | 600 | 632 | 2
5.91 | 71.23 | 128.20
|
| EfficientNetB0_
<br>
small | 224 | 256 | 1.
24 | 2.59 | 3.92
|
<a
name=
'4'
></a>
...
...
docs/zh_CN/models/HRNet.md
浏览文件 @
a1ad2c89
...
...
@@ -43,17 +43,17 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br
>
Batch Size=1
<br
>
(ms) |
|-------------|-----------|-------------------|--------------------------|
| HRNet_W18_C | 224 | 256 |
7.368
|
| HRNet_W18_C_ssld | 224 | 256 |
7.368
|
| HRNet_W30_C | 224 | 256 |
9.402
|
| HRNet_W32_C | 224 | 256 |
9.467
|
| HRNet_W40_C | 224 | 256 |
10.739
|
| HRNet_W44_C | 224 | 256 | 1
1.497
|
| HRNet_W48_C | 224 | 256 | 1
2.165
|
| HRNet_W48_C_ssld | 224 | 256 | 1
2.165
|
| HRNet_W64_C | 224 | 256 | 1
5.003
|
| Models | Crop Size | Resize Short Size | FP32
<br
/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/
>
(ms) |
|-------------|-----------|-------------------|-------------------
|-------------------|------------
-------|
| HRNet_W18_C | 224 | 256 |
6.66 | 8.94 | 11.95
|
| HRNet_W18_C_ssld | 224 | 256 |
6.66 | 8.92 | 11.93
|
| HRNet_W30_C | 224 | 256 |
8.61 | 11.40 | 15.23
|
| HRNet_W32_C | 224 | 256 |
8.54 | 11.58 | 15.57
|
| HRNet_W40_C | 224 | 256 |
9.83 | 15.02 | 20.92
|
| HRNet_W44_C | 224 | 256 | 1
0.62 | 16.18 | 25.92
|
| HRNet_W48_C | 224 | 256 | 1
1.07 | 17.06 | 27.28
|
| HRNet_W48_C_ssld | 224 | 256 | 1
1.09 | 17.04 | 27.28
|
| HRNet_W64_C | 224 | 256 | 1
3.82 | 21.15 | 35.51
|
<a
name=
'4'
></a>
...
...
docs/zh_CN/models/HarDNet.md
浏览文件 @
a1ad2c89
...
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
## 1. 概述
...
...
@@ -20,3 +21,15 @@ HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种
| HarDNet85 | 36.7 | 9.1 | 77.44 | 93.55 |
| HarDNet39_ds | 3.5 | 0.4 | 71.33 | 89.98 |
| HarDNet68_ds | 4.2 | 0.8 | 73.62 | 91.52 |
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| HarDNet68 | 224 | 256 | 3.58 | 8.53 | 11.58 |
| HarDNet85 | 224 | 256 | 6.24 | 14.85 | 20.57 |
| HarDNet39_ds | 224 | 256 | 1.40 | 2.30 | 3.33 |
| HarDNet68_ds | 224 | 256 | 2.26 | 3.34 | 5.06 |
docs/zh_CN/models/Inception.md
浏览文件 @
a1ad2c89
...
...
@@ -53,15 +53,15 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br
>
Batch Size=1
<br
>
(ms) |
|------------------------|-----------|-------------------|--------------------------|
| GoogLeNet | 224 | 256 | 1.
807
|
| Xception41 | 299 | 320 | 3.
972
|
| Xception41_
<br>
deeplab | 299 | 320 |
4.408
|
| Xception65 | 299 | 320 |
6.174
|
| Xception65_
<br>
deeplab | 299 | 320 |
6.464
|
| Xception71 | 299 | 320 | 6.
782
|
| InceptionV4 | 299 | 320 |
11.141
|
| Models | Crop Size | Resize Short Size | FP32
<br
/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/
>
(ms) |
|------------------------|-----------|-------------------|------------------------
|------------------------|----------------------
--|
| GoogLeNet | 224 | 256 | 1.
41 | 3.25 | 5.00
|
| Xception41 | 299 | 320 | 3.
58 | 8.76 | 16.61
|
| Xception41_
<br>
deeplab | 299 | 320 |
3.81 | 9.16 | 17.20
|
| Xception65 | 299 | 320 |
5.45 | 12.78 | 24.53
|
| Xception65_
<br>
deeplab | 299 | 320 |
5.65 | 13.08 | 24.61
|
| Xception71 | 299 | 320 | 6.
19 | 15.34 | 29.21
|
| InceptionV4 | 299 | 320 |
8.93 | 15.17 | 21.56
|
<a
name=
'4'
></a>
...
...
docs/zh_CN/models/MixNet.md
浏览文件 @
a1ad2c89
...
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
...
...
@@ -26,4 +27,14 @@ MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在
| MixNet_M | 77.67 | 93.64 | 77.0 | 357.119 | 5.065 |
| MixNet_L | 78.60 | 94.37 | 78.9 | 579.017 | 7.384 |
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| -------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| MixNet_S | 224 | 256 | 2.31 | 3.63 | 5.20 |
| MixNet_M | 224 | 256 | 2.84 | 4.60 | 6.62 |
| MixNet_L | 224 | 256 | 3.16 | 5.55 | 8.03 |
关于 Inference speed 等信息,敬请期待。
docs/zh_CN/models/Mobile.md
浏览文件 @
a1ad2c89
...
...
@@ -5,7 +5,8 @@
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 SD855 的预测速度和存储大小
](
#3
)
*
[
4. 基于 T4 GPU 的预测速度
](
#4
)
*
[
4. 基于 V100 GPU 的预测速度
](
#4
)
*
[
5. 基于 T4 GPU 的预测速度
](
#5
)
<a
name=
'1'
></a>
...
...
@@ -79,84 +80,128 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
## 3. 基于 SD855 的预测速度和存储大小
| Models |
Batch Size=1(ms)
| Storage Size(M) |
|:--:|
:--:|:--:
|
| MobileNetV1_x0_25 |
3.220
| 1.900 |
| MobileNetV1_x0_5 |
9.580
| 5.200 |
| MobileNetV1_x0_75 | 1
9.436
| 10.000 |
| MobileNetV1 | 3
2.523
| 16.000 |
| MobileNetV1_ssld | 3
2.523
| 16.000 |
| MobileNetV2_x0_25 | 3.
799
| 6.100 |
| MobileNetV2_x0_5 |
8.702
| 7.800 |
| MobileNetV2_x0_75 | 1
5.531
| 10.000 |
| MobileNetV2 | 2
3.318
| 14.000 |
| MobileNetV2_x1_5 | 4
5.624
| 26.000 |
| MobileNetV2_x2_0 |
74.292
| 43.000 |
| MobileNetV2_ssld | 2
3.318
| 14.000 |
| MobileNetV3_large_x1_25 | 2
8.218
| 29.000 |
| MobileNetV3_large_x1_0 | 1
9.308
| 21.000 |
| MobileNetV3_large_x0_75 | 1
3.565
| 16.000 |
| MobileNetV3_large_x0_5 |
7.493
| 11.000 |
| MobileNetV3_large_x0_35 |
5.137
| 8.600 |
| MobileNetV3_small_x1_25 |
9.275
| 14.000 |
| MobileNetV3_small_x1_0 |
6.546
| 12.000 |
| MobileNetV3_small_x0_75 |
5.284
| 9.600 |
| MobileNetV3_small_x0_5 |
3.352
| 7.800 |
| MobileNetV3_small_x0_35 | 2.
635
| 6.900 |
| MobileNetV3_small_x0_35_ssld |
2.635
| 6.900 |
| MobileNetV3_large_x1_0_ssld | 1
9.308
| 21.000 |
| MobileNetV3_large_x1_0_ssld_int8 |
14.395
| 10.000 |
| MobileNetV3_small_x1_0_ssld |
6.546
| 12.000 |
| ShuffleNetV2 |
10.941
| 9.000 |
| ShuffleNetV2_x0_25 |
2.329
| 2.700 |
| ShuffleNetV2_x0_33 | 2.
643
| 2.800 |
| ShuffleNetV2_x0_5 |
4.261
| 5.600 |
| ShuffleNetV2_x1_5 | 1
9.352
| 14.000 |
| ShuffleNetV2_x2_0 | 3
4.770
| 28.000 |
| ShuffleNetV2_swish |
16.023
| 9.100 |
| GhostNet_x0_5 | 5.
714
| 10.000 |
| GhostNet_x1_0 | 1
3.558
| 20.000 |
| GhostNet_x1_3 | 19.
982
| 29.000 |
| GhostNet_x1_3_ssld | 19.
982
| 29.000 |
| Models |
SD855 time(ms)
<br>
bs=1, thread=1 | SD855 time(ms)
<br/>
bs=1, thread=2 | SD855 time(ms)
<br/>
bs=1, thread=4
| Storage Size(M) |
|:--:|
----|----|----|----
|
| MobileNetV1_x0_25 |
2.88 | 1.82 | 1.26
| 1.900 |
| MobileNetV1_x0_5 |
8.74 | 5.26 | 3.09
| 5.200 |
| MobileNetV1_x0_75 | 1
7.84 | 10.61 | 6.21
| 10.000 |
| MobileNetV1 | 3
0.24 | 17.86 | 10.30
| 16.000 |
| MobileNetV1_ssld | 3
0.19 | 17.85 | 10.23
| 16.000 |
| MobileNetV2_x0_25 | 3.
46 | 2.51 | 2.03
| 6.100 |
| MobileNetV2_x0_5 |
7.69 | 4.92 | 3.57
| 7.800 |
| MobileNetV2_x0_75 | 1
3.69 | 8.60 | 5.82
| 10.000 |
| MobileNetV2 | 2
0.74 | 12.71 | 8.10
| 14.000 |
| MobileNetV2_x1_5 | 4
0.79 | 24.49 | 15.50
| 26.000 |
| MobileNetV2_x2_0 |
67.50 | 40.03 | 25.55
| 43.000 |
| MobileNetV2_ssld | 2
0.71 | 12.70 | 8.06
| 14.000 |
| MobileNetV3_large_x1_25 | 2
4.52 | 14.76 | 9.89
| 29.000 |
| MobileNetV3_large_x1_0 | 1
6.55 | 10.09 | 6.84
| 21.000 |
| MobileNetV3_large_x0_75 | 1
1.53 | 7.06 | 4.94
| 16.000 |
| MobileNetV3_large_x0_5 |
6.50 | 4.22 | 3.15
| 11.000 |
| MobileNetV3_large_x0_35 |
4.43 | 3.11 | 2.41
| 8.600 |
| MobileNetV3_small_x1_25 |
7.88 | 4.91 | 3.45
| 14.000 |
| MobileNetV3_small_x1_0 |
5.63 | 3.65 | 2.60
| 12.000 |
| MobileNetV3_small_x0_75 |
4.50 | 2.96 | 2.19
| 9.600 |
| MobileNetV3_small_x0_5 |
2.89 | 2.04 | 1.62
| 7.800 |
| MobileNetV3_small_x0_35 | 2.
23 | 1.66 | 1.43
| 6.900 |
| MobileNetV3_small_x0_35_ssld |
| |
| 6.900 |
| MobileNetV3_large_x1_0_ssld | 1
6.56 | 10.10 | 6.86
| 21.000 |
| MobileNetV3_large_x1_0_ssld_int8 |
| |
| 10.000 |
| MobileNetV3_small_x1_0_ssld |
5.64 | 3.67 | 2.61
| 12.000 |
| ShuffleNetV2 |
9.72 | 5.97 | 4.13
| 9.000 |
| ShuffleNetV2_x0_25 |
1.94 | 1.53 | 1.43
| 2.700 |
| ShuffleNetV2_x0_33 | 2.
23 | 1.70 | 1.79
| 2.800 |
| ShuffleNetV2_x0_5 |
3.67 | 2.63 | 2.06
| 5.600 |
| ShuffleNetV2_x1_5 | 1
7.21 | 10.56 | 6.81
| 14.000 |
| ShuffleNetV2_x2_0 | 3
1.21 | 18.98 | 11.65
| 28.000 |
| ShuffleNetV2_swish |
31.21 | 9.06 | 5.74
| 9.100 |
| GhostNet_x0_5 | 5.
28 | 3.95 | 3.29
| 10.000 |
| GhostNet_x1_0 | 1
2.89 | 8.66 | 6.72
| 20.000 |
| GhostNet_x1_3 | 19.
16 | 12.25 | 9.40
| 29.000 |
| GhostNet_x1_3_ssld | 19.
16 | 17.85 | 10.18
| 29.000 |
<a
name=
'4'
></a>
## 4. 基于 T4 GPU 的预测速度
| Models | FP16
<br>
Batch Size=1
<br>
(ms) | FP16
<br>
Batch Size=4
<br>
(ms) | FP16
<br>
Batch Size=8
<br>
(ms) | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| MobileNetV1_x0_25 | 0.68422 | 1.13021 | 1.72095 | 0.67274 | 1.226 | 1.84096 |
| MobileNetV1_x0_5 | 0.69326 | 1.09027 | 1.84746 | 0.69947 | 1.43045 | 2.39353 |
| MobileNetV1_x0_75 | 0.6793 | 1.29524 | 2.15495 | 0.79844 | 1.86205 | 3.064 |
| MobileNetV1 | 0.71942 | 1.45018 | 2.47953 | 0.91164 | 2.26871 | 3.90797 |
| MobileNetV1_ssld | 0.71942 | 1.45018 | 2.47953 | 0.91164 | 2.26871 | 3.90797 |
| MobileNetV2_x0_25 | 2.85399 | 3.62405 | 4.29952 | 2.81989 | 3.52695 | 4.2432 |
| MobileNetV2_x0_5 | 2.84258 | 3.1511 | 4.10267 | 2.80264 | 3.65284 | 4.31737 |
| MobileNetV2_x0_75 | 2.82183 | 3.27622 | 4.98161 | 2.86538 | 3.55198 | 5.10678 |
| MobileNetV2 | 2.78603 | 3.71982 | 6.27879 | 2.62398 | 3.54429 | 6.41178 |
| MobileNetV2_x1_5 | 2.81852 | 4.87434 | 8.97934 | 2.79398 | 5.30149 | 9.30899 |
| MobileNetV2_x2_0 | 3.65197 | 6.32329 | 11.644 | 3.29788 | 7.08644 | 12.45375 |
| MobileNetV2_ssld | 2.78603 | 3.71982 | 6.27879 | 2.62398 | 3.54429 | 6.41178 |
| MobileNetV3_large_x1_25 | 2.34387 | 3.16103 | 4.79742 | 2.35117 | 3.44903 | 5.45658 |
| MobileNetV3_large_x1_0 | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 |
| MobileNetV3_large_x0_75 | 2.1058 | 2.61426 | 3.61021 | 2.0006 | 2.56987 | 3.78005 |
| MobileNetV3_large_x0_5 | 2.06934 | 2.77341 | 3.35313 | 2.11199 | 2.88172 | 3.19029 |
| MobileNetV3_large_x0_35 | 2.14965 | 2.7868 | 3.36145 | 1.9041 | 2.62951 | 3.26036 |
| MobileNetV3_small_x1_25 | 2.06817 | 2.90193 | 3.5245 | 2.02916 | 2.91866 | 3.34528 |
| MobileNetV3_small_x1_0 | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 |
| MobileNetV3_small_x0_75 | 1.80617 | 2.64646 | 3.24513 | 1.93697 | 2.64285 | 3.32797 |
| MobileNetV3_small_x0_5 | 1.95001 | 2.74014 | 3.39485 | 1.88406 | 2.99601 | 3.3908 |
| MobileNetV3_small_x0_35 | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_small_x0_35_ssld | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 |
| MobileNetV3_large_x1_0_ssld | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 |
| MobileNetV3_small_x1_0_ssld | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 |
| ShuffleNetV2 | 1.95064 | 2.15928 | 2.97169 | 1.89436 | 2.26339 | 3.17615 |
| ShuffleNetV2_x0_25 | 1.43242 | 2.38172 | 2.96768 | 1.48698 | 2.29085 | 2.90284 |
| ShuffleNetV2_x0_33 | 1.69008 | 2.65706 | 2.97373 | 1.75526 | 2.85557 | 3.09688 |
| ShuffleNetV2_x0_5 | 1.48073 | 2.28174 | 2.85436 | 1.59055 | 2.18708 | 3.09141 |
| ShuffleNetV2_x1_5 | 1.51054 | 2.4565 | 3.41738 | 1.45389 | 2.5203 | 3.99872 |
| ShuffleNetV2_x2_0 | 1.95616 | 2.44751 | 4.19173 | 2.15654 | 3.18247 | 5.46893 |
| ShuffleNetV2_swish | 2.50213 | 2.92881 | 3.474 | 2.5129 | 2.97422 | 3.69357 |
| GhostNet_x0_5 | 2.64492 | 3.48473 | 4.48844 | 2.36115 | 3.52802 | 3.89444 |
| GhostNet_x1_0 | 2.63120 | 3.92065 | 4.48296 | 2.57042 | 3.56296 | 4.85524 |
| GhostNet_x1_3 | 2.89715 | 3.80329 | 4.81661 | 2.81810 | 3.72071 | 5.92269 |
## 4. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| -------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| MobileNetV1_x0_25 | 224 | 256 | 0.47 | 0.93 | 1.39 |
| MobileNetV1_x0_5 | 224 | 256 | 0.48 | 1.09 | 1.69 |
| MobileNetV1_x0_75 | 224 | 256 | 0.55 | 1.34 | 2.03 |
| MobileNetV1 | 224 | 256 | 0.64 | 1.57 | 2.48 |
| MobileNetV1_ssld | 224 | 256 | 0.66 | 1.59 | 2.58 |
| MobileNetV2_x0_25 | 224 | 256 | 0.83 | 1.17 | 1.78 |
| MobileNetV2_x0_5 | 224 | 256 | 0.84 | 1.45 | 2.04 |
| MobileNetV2_x0_75 | 224 | 256 | 0.96 | 1.62 | 2.53 |
| MobileNetV2 | 224 | 256 | 1.02 | 1.93 | 2.89 |
| MobileNetV2_x1_5 | 224 | 256 | 1.32 | 2.58 | 4.14 |
| MobileNetV2_x2_0 | 224 | 256 | 1.57 | 3.13 | 4.76 |
| MobileNetV2_ssld | 224 | 256 | 1.01 | 1.97 | 2.84 |
| MobileNetV3_large_x1_25 | 224 | 256 | 1.75 | 2.87 | 4.23 |
| MobileNetV3_large_x1_0 | 224 | 256 | 1.37 | 2.67 | 3.46 |
| MobileNetV3_large_x0_75 | 224 | 256 | 1.37 | 2.23 | 3.17 |
| MobileNetV3_large_x0_5 | 224 | 256 | 1.10 | 1.85 | 2.69 |
| MobileNetV3_large_x0_35 | 224 | 256 | 1.01 | 1.44 | 1.92 |
| MobileNetV3_small_x1_25 | 224 | 256 | 1.20 | 2.04 | 2.64 |
| MobileNetV3_small_x1_0 | 224 | 256 | 1.03 | 1.76 | 2.50 |
| MobileNetV3_small_x0_75 | 224 | 256 | 1.04 | 1.71 | 2.37 |
| MobileNetV3_small_x0_5 | 224 | 256 | 1.01 | 1.49 | 2.01 |
| MobileNetV3_small_x0_35 | 224 | 256 | 1.01 | 1.44 | 1.92 |
| MobileNetV3_small_x0_35_ssld | 224 | 256 | | | |
| MobileNetV3_large_x1_0_ssld | 224 | 256 | 1.35 | 2.47 | 3.72 |
| MobileNetV3_large_x1_0_ssld_int8 | 224 | 256 | | | |
| MobileNetV3_small_x1_0_ssld | 224 | 256 | 1.06 | 1.89 | 2.48 |
| ShuffleNetV2 | 224 | 256 | 1.05 | 1.76 | 2.37 |
| ShuffleNetV2_x0_25 | 224 | 256 | 0.92 | 1.27 | 1.73 |
| ShuffleNetV2_x0_33 | 224 | 256 | 0.91 | 1.29 | 1.81 |
| ShuffleNetV2_x0_5 | 224 | 256 | 0.89 | 1.43 | 1.94 |
| ShuffleNetV2_x1_5 | 224 | 256 | 0.93 | 1.99 | 2.85 |
| ShuffleNetV2_x2_0 | 224 | 256 | 1.45 | 2.70 | 3.35 |
| ShuffleNetV2_swish | 224 | 256 | 1.43 | 1.93 | 2.69 |
| GhostNet_x0_5 | 224 | 256 | 1.66 | 2.24 | 2.73 |
| GhostNet_x1_0 | 224 | 256 | 1.69 | 2.73 | 3.81 |
| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 |
| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 |
<a
name=
'5'
></a>
## 5. 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| MobileNetV1_x0_25 | 224 | 256 | 0.47 | 0.93 | 1.39 |
| MobileNetV1_x0_5 | 224 | 256 | 0.48 | 1.09 | 1.69 |
| MobileNetV1_x0_75 | 224 | 256 | 0.55 | 1.34 | 2.03 |
| MobileNetV1 | 224 | 256 | 0.64 | 1.57 | 2.48 |
| MobileNetV1_ssld | 224 | 256 | 0.66 | 1.59 | 2.58 |
| MobileNetV2_x0_25 | 224 | 256 | 0.83 | 1.17 | 1.78 |
| MobileNetV2_x0_5 | 224 | 256 | 0.84 | 1.45 | 2.04 |
| MobileNetV2_x0_75 | 224 | 256 | 0.96 | 1.62 | 2.53 |
| MobileNetV2 | 224 | 256 | 1.02 | 1.93 | 2.89 |
| MobileNetV2_x1_5 | 224 | 256 | 1.32 | 2.58 | 4.14 |
| MobileNetV2_x2_0 | 224 | 256 | 1.57 | 3.13 | 4.76 |
| MobileNetV2_ssld | 224 | 256 | 1.01 | 1.97 | 2.84 |
| MobileNetV3_small_x0_35 | 224 | 256 | 1.01 | 1.44 | 1.92 |
| MobileNetV3_small_x0_5 | 224 | 256 | 1.01 | 1.49 | 2.01 |
| MobileNetV3_small_x0_75 | 224 | 256 | 1.04 | 1.71 | 2.37 |
| MobileNetV3_small_x1_0 | 224 | 256 | 1.03 | 1.76 | 2.50 |
| MobileNetV3_small_x1_25 | 224 | 256 | 1.20 | 2.04 | 2.64 |
| MobileNetV3_large_x0_35 | 224 | 256 | 1.10 | 1.74 | 2.34 |
| MobileNetV3_large_x0_5 | 224 | 256 | 1.10 | 1.85 | 2.69 |
| MobileNetV3_large_x0_75 | 224 | 256 | 1.37 | 2.23 | 3.17 |
| MobileNetV3_large_x1_0 | 224 | 256 | 1.37 | 2.67 | 3.46 |
| MobileNetV3_large_x1_25 | 224 | 256 | 1.75 | 2.87 | 4.23 |
| MobileNetV3_small_x1_0_ssld | 224 | 256 | 1.06 | 1.89 | 2.48 |
| MobileNetV3_large_x1_0_ssld | 224 | 256 | 1.35 | 2.47 | 3.72 |
| ShuffleNetV2_swish | 224 | 256 | 1.43 | 1.93 | 2.69 |
| ShuffleNetV2_x0_25 | 224 | 256 | 0.92 | 1.27 | 1.73 |
| ShuffleNetV2_x0_33 | 224 | 256 | 0.91 | 1.29 | 1.81 |
| ShuffleNetV2_x0_5 | 224 | 256 | 0.89 | 1.43 | 1.94 |
| ShuffleNetV2_x1_0 | 224 | 256 | 1.05 | 1.76 | 2.37 |
| ShuffleNetV2_x1_5 | 224 | 256 | 0.93 | 1.99 | 2.85 |
| ShuffleNetV2_x2_0 | 224 | 256 | 1.45 | 2.70 | 3.35 |
| GhostNet_x0_5 | 224 | 256 | 1.66 | 2.24 | 2.73 |
| GhostNet_x1_0 | 224 | 256 | 1.69 | 2.73 | 3.81 |
| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 |
| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 |
docs/zh_CN/models/Others.md
浏览文件 @
a1ad2c89
...
...
@@ -37,16 +37,16 @@ DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br
>
Batch Size=1
<br
>
(ms) |
|---------------------------|-----------|-------------------|----------------------|
| AlexNet | 224 | 256 |
1.176
|
| SqueezeNet1_0 | 224 | 256 | 0.
860
|
| SqueezeNet1_1 | 224 | 256 | 0.
763
|
| VGG11 | 224 | 256 | 1.
867
|
| VGG13 | 224 | 256 | 2.
148
|
| VGG16 | 224 | 256 | 2.
616
|
| VGG19 | 224 | 256 |
3.076
|
| DarkNet53 | 256 | 256 |
3.139
|
| Models | Crop Size | Resize Short Size | FP32
<br
/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/
>
(ms) |
|---------------------------|-----------|-------------------|-------------------
|-------------------|----------------
---|
| AlexNet | 224 | 256 |
0.81 | 1.50 | 2.33
|
| SqueezeNet1_0 | 224 | 256 | 0.
68 | 1.64 | 2.62
|
| SqueezeNet1_1 | 224 | 256 | 0.
62 | 1.30 | 2.09
|
| VGG11 | 224 | 256 | 1.
72 | 4.15 | 7.24
|
| VGG13 | 224 | 256 | 2.
02 | 5.28 | 9.54
|
| VGG16 | 224 | 256 | 2.
48 | 6.79 | 12.33
|
| VGG19 | 224 | 256 |
2.93 | 8.28 | 15.21
|
| DarkNet53 | 256 | 256 |
2.79 | 6.42 | 10.89
|
<a
name=
'4'
></a>
...
...
docs/zh_CN/models/PP-LCNet.md
浏览文件 @
a1ad2c89
...
...
@@ -14,8 +14,9 @@
-
[
4.1 图像分类
](
#4.1
)
-
[
4.2 目标检测
](
#4.2
)
-
[
4.3 语义分割
](
#4.3
)
-
[
5. 总结
](
#5
)
-
[
6. 引用
](
#6
)
-
[
5. 基于 V100 GPU 的预测速度
](
#5
)
-
[
6. 总结
](
#6
)
-
[
7. 引用
](
#7
)
<a
name=
"1"
></a>
## 1. 摘要
...
...
@@ -54,7 +55,7 @@ SE 模块是 SENet 提出的一种通道注意力机制,可以有效提升模
|
<b>
0000000000011
<b>
|
<b>
63.14
<b>
|
<b>
2.05
<b>
|
| 1111111111111 | 64.27 | 3.80 |
最终,PP-LCNet 中的 SE 模块的位置选用了表格中第三行的方案。
<a
name=
"3.3"
></a>
...
...
@@ -106,7 +107,7 @@ BaseNet 经过以上四个方面的改进,得到了 PP-LCNet。下表进一步
| PP-LCNet-0.5x
\*
| 1.9 | 47 | 66.10 | 86.46 | 2.05 |
| PP-LCNet-1.0x
\*
| 3.0 | 161 | 74.39 | 92.09 | 2.46 |
| PP-LCNet-2.5x
\*
| 9.0 | 906 | 80.82 | 95.33 | 5.39 |
其中
\*
表示使用 SSLD 蒸馏后的模型。
与其他轻量级网络的性能对比:
...
...
@@ -145,18 +146,34 @@ MobileNetV3-large-0.75x | 25.8 | 11.1 |
| Backbone | mIoU(%) | Latency(ms) |
|-------|-----------|----------|
MobileNetV3-large-0.5x | 55.42 | 135 |
<b>
PP-LCNet-0.5x
<b>
|
<b>
58.36
<b>
|
<b>
82
<b>
|
MobileNetV3-large-0.75x | 64.53 | 151 |
<b>
PP-LCNet-1x
<b>
|
<b>
66.03
<b>
|
<b>
96
<b>
|
|
MobileNetV3-large-0.5x | 55.42 | 135 |
|
<b>
PP-LCNet-0.5x
<b>
|
<b>
58.36
<b>
|
<b>
82
<b>
|
|
MobileNetV3-large-0.75x | 64.53 | 151 |
|
<b>
PP-LCNet-1x
<b>
|
<b>
66.03
<b>
|
<b>
96
<b>
|
<a
name=
"5"
></a>
## 5. 总结
PP-LCNet 没有像学术界那样死扣极致的 FLOPs 与 Params,而是着眼于分析如何添加对 Intel CPU 友好的模块来提升模型的性能,这样可以更好的平衡准确率和推理时间,其中的实验结论也很适合其他网络结构设计的研究者,同时也为 NAS 搜索研究者提供了更小的搜索空间和一般结论。最终的 PP-LCNet 在产业界也可以更好的落地和应用。
## 5. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br/>
Batch Size=1
\4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ------------- | --------- | ----------------- | ---------------------------- | -------------------------------- | ------------------------------ |
| PPLCNet_x0_25 | 224 | 256 | 0.72 | 1.17 | 1.71 |
| PPLCNet_x0_35 | 224 | 256 | 0.69 | 1.21 | 1.82 |
| PPLCNet_x0_5 | 224 | 256 | 0.70 | 1.32 | 1.94 |
| PPLCNet_x0_75 | 224 | 256 | 0.71 | 1.49 | 2.19 |
| PPLCNet_x1_0 | 224 | 256 | 0.73 | 1.64 | 2.53 |
| PPLCNet_x1_5 | 224 | 256 | 0.82 | 2.06 | 3.12 |
| PPLCNet_x2_0 | 224 | 256 | 0.94 | 2.58 | 4.08 |
<a
name=
"6"
></a>
## 6. 引用
## 6. 总结
PP-LCNet 没有像学术界那样死扣极致的 FLOPs 与 Params,而是着眼于分析如何添加对 Intel CPU 友好的模块来提升模型的性能,这样可以更好的平衡准确率和推理时间,其中的实验结论也很适合其他网络结构设计的研究者,同时也为 NAS 搜索研究者提供了更小的搜索空间和一般结论。最终的 PP-LCNet 在产业界也可以更好的落地和应用。
<a
name=
"7"
></a>
## 7. 引用
如果你的论文用到了 PP-LCNet 的方法,请添加如下 cite:
```
...
...
docs/zh_CN/models/ReXNet.md
浏览文件 @
a1ad2c89
...
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
...
...
@@ -24,4 +25,16 @@ ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范
| ReXNet_2_0 | 81.22 | 95.36 | 81.6 | 1.561 | 16.449 |
| ReXNet_3_0 | 82.09 | 96.12 | 82.8 | 3.445 | 34.833 |
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ---------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| ReXNet_1_0 | 224 | 256 | 3.08 | 4.15 | 5.49 |
| ReXNet_1_3 | 224 | 256 | 3.54 | 4.87 | 6.54 |
| ReXNet_1_5 | 224 | 256 | 3.68 | 5.31 | 7.38 |
| ReXNet_2_0 | 224 | 256 | 4.30 | 6.54 | 9.19 |
| ReXNet_3_0 | 224 | 256 | 5.74 | 9.49 | 13.62 |
关于 Inference speed 等信息,敬请期待。
docs/zh_CN/models/RedNet.md
浏览文件 @
a1ad2c89
...
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
## 1. 概述
...
...
@@ -19,4 +20,16 @@
| RedNet38 | 12.4 | 2.2 | 77.47 | 93.56 |
| RedNet50 | 15.5 | 2.7 | 78.33 | 94.17 |
| RedNet101 | 25.7 | 4.7 | 78.94 | 94.36 |
| RedNet152 | 34.0 | 6.8 | 79.17 | 94.40 |
\ No newline at end of file
| RedNet152 | 34.0 | 6.8 | 79.17 | 94.40 |
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| 模型 | Crop Size | Resize Short Size | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 |
| --------- | --------- | ----------------- | ---------------- | ---------------- | ----------------- |
| RedNet26 | 224 | 256 | 4.45 | 15.16 | 29.03 |
| RedNet38 | 224 | 256 | 6.24 | 21.39 | 41.26 |
| RedNet50 | 224 | 256 | 8.04 | 27.71 | 53.73 |
| RedNet101 | 224 | 256 | 13.07 | 44.12 | 83.28 |
| RedNet152 | 224 | 256 | 18.66 | 63.27 | 119.48 |
\ No newline at end of file
docs/zh_CN/models/ResNeSt_RegNet.md
浏览文件 @
a1ad2c89
...
...
@@ -4,7 +4,8 @@
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于 T4 GPU 的预测速度
](
#3
)
*
[
3. 基于 V100 GPU 的预测速度
](
#3
)
*
[
4. 基于 T4 GPU 的预测速度
](
#4
)
<a
name=
'1'
></a>
...
...
@@ -26,7 +27,17 @@ RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概
<a
name=
'3'
></a>
## 3. 基于 T4 GPU 的预测速度
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ---------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| ResNeSt50_fast_1s1x64d | 224 | 256 | 2.73 | 5.33 | 8.24 |
| ResNeSt50 | 224 | 256 | 7.36 | 10.23 | 13.84 |
| RegNetX_4GF | 224 | 256 | 6.46 | 8.48 | 11.45 |
<a
name=
'4'
></a>
## 4. 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16
<br>
Batch Size=1
<br>
(ms) | FP16
<br>
Batch Size=4
<br>
(ms) | FP16
<br>
Batch Size=8
<br>
(ms) | FP32
<br>
Batch Size=1
<br>
(ms) | FP32
<br>
Batch Size=4
<br>
(ms) | FP32
<br>
Batch Size=8
<br>
(ms) |
|--------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
...
...
docs/zh_CN/models/ResNet_and_vd.md
浏览文件 @
a1ad2c89
...
...
@@ -63,24 +63,24 @@ ResNet 系列模型是在 2015 年提出的,一举在 ILSVRC2015 比赛中取
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
|------------------|-----------|-------------------|--------------------------|
| ResNet18 | 224 | 256 | 1.
499
|
| ResNet18_vd | 224 | 256 | 1.
603
|
| ResNet34 | 224 | 256 |
2.272
|
| ResNet34_vd | 224 | 256 | 2.
343
|
| ResNet34_vd_ssld | 224 | 256 | 2.
343
|
| ResNet50 | 224 | 256 | 2.
939
|
| ResNet50_vc | 224 | 256 |
3.041
|
| ResNet50_vd | 224 | 256 |
3.165
|
| ResNet50_vd_v2 | 224 | 256 |
3.165
|
| ResNet101 | 224 | 256 |
5.314
|
| ResNet101_vd | 224 | 256 |
5.252
|
| ResNet152 | 224 | 256 |
7.205
|
| ResNet152_vd | 224 | 256 |
7.200
|
| ResNet200_vd | 224 | 256 |
8.885
|
| ResNet50_vd_ssld | 224 | 256 |
3.165
|
| ResNet101_vd_ssld | 224 | 256 |
5.252
|
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
FP32
<br/>
Batch Size=1
\4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
|------------------|-----------|-------------------|--------------------------|
--------------------------|--------------------------|
| ResNet18 | 224 | 256 | 1.
22 | 2.19 | 3.63
|
| ResNet18_vd | 224 | 256 | 1.
26 | 2.28 | 3.89
|
| ResNet34 | 224 | 256 |
1.97 | 3.25 | 5.70
|
| ResNet34_vd | 224 | 256 | 2.
00 | 3.28 | 5.84
|
| ResNet34_vd_ssld | 224 | 256 | 2.
00 | 3.26 | 5.85
|
| ResNet50 | 224 | 256 | 2.
54 | 4.79 | 7.40
|
| ResNet50_vc | 224 | 256 |
2.57 | 4.83 | 7.52
|
| ResNet50_vd | 224 | 256 |
2.60 | 4.86 | 7.63
|
| ResNet50_vd_v2 | 224 | 256 |
2.59 | 4.86 | 7.59
|
| ResNet101 | 224 | 256 |
4.37 | 8.18 | 12.38
|
| ResNet101_vd | 224 | 256 |
4.43 | 8.25 | 12.60
|
| ResNet152 | 224 | 256 |
6.05 | 11.41 | 17.33
|
| ResNet152_vd | 224 | 256 |
6.11 | 11.51 | 17.59
|
| ResNet200_vd | 224 | 256 |
7.70 | 14.57 | 22.16
|
| ResNet50_vd_ssld | 224 | 256 |
2.59 | 4.87 | 7.62
|
| ResNet101_vd_ssld | 224 | 256 |
4.43 | 8.25 | 12.58
|
<a
name=
'4'
></a>
...
...
docs/zh_CN/models/SEResNext_and_Res2Net.md
浏览文件 @
a1ad2c89
...
...
@@ -71,32 +71,35 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br>
Batch Size=1
<br>
(ms) |
|-----------------------|-----------|-------------------|--------------------------|
| Res2Net50_26w_4s | 224 | 256 | 4.148 |
| Res2Net50_vd_26w_4s | 224 | 256 | 4.172 |
| Res2Net50_14w_8s | 224 | 256 | 5.113 |
| Res2Net101_vd_26w_4s | 224 | 256 | 7.327 |
| Res2Net200_vd_26w_4s | 224 | 256 | 12.806 |
| ResNeXt50_32x4d | 224 | 256 | 10.964 |
| ResNeXt50_vd_32x4d | 224 | 256 | 7.566 |
| ResNeXt50_64x4d | 224 | 256 | 13.905 |
| ResNeXt50_vd_64x4d | 224 | 256 | 14.321 |
| ResNeXt101_32x4d | 224 | 256 | 14.915 |
| ResNeXt101_vd_32x4d | 224 | 256 | 14.885 |
| ResNeXt101_64x4d | 224 | 256 | 28.716 |
| ResNeXt101_vd_64x4d | 224 | 256 | 28.398 |
| ResNeXt152_32x4d | 224 | 256 | 22.996 |
| ResNeXt152_vd_32x4d | 224 | 256 | 22.729 |
| ResNeXt152_64x4d | 224 | 256 | 46.705 |
| ResNeXt152_vd_64x4d | 224 | 256 | 46.395 |
| SE_ResNet18_vd | 224 | 256 | 1.694 |
| SE_ResNet34_vd | 224 | 256 | 2.786 |
| SE_ResNet50_vd | 224 | 256 | 3.749 |
| SE_ResNeXt50_32x4d | 224 | 256 | 8.924 |
| SE_ResNeXt50_vd_32x4d | 224 | 256 | 9.011 |
| SE_ResNeXt101_32x4d | 224 | 256 | 19.204 |
| SENet154_vd | 224 | 256 | 50.406 |
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
|-----------------------|-----------|-------------------|-----------------------|-----------------------|-----------------------|
| Res2Net50_26w_4s | 224 | 256 | 3.52 | 6.23 | 9.30 |
| Res2Net50_vd_26w_4s | 224 | 256 | 3.59 | 6.35 | 9.50 |
| Res2Net50_14w_8s | 224 | 256 | 4.39 | 7.21 | 10.38 |
| Res2Net101_vd_26w_4s | 224 | 256 | 6.34 | 11.02 | 16.13 |
| Res2Net200_vd_26w_4s | 224 | 256 | 11.45 | 19.77 | 28.81 |
| ResNeXt50_32x4d | 224 | 256 | 5.07 | 8.49 | 12.02 |
| ResNeXt50_vd_32x4d | 224 | 256 | 5.29 | 8.68 | 12.33 |
| ResNeXt50_64x4d | 224 | 256 | 9.39 | 13.97 | 20.56 |
| ResNeXt50_vd_64x4d | 224 | 256 | 9.75 | 14.14 | 20.84 |
| ResNeXt101_32x4d | 224 | 256 | 11.34 | 16.78 | 22.80 |
| ResNeXt101_vd_32x4d | 224 | 256 | 11.36 | 17.01 | 23.07 |
| ResNeXt101_64x4d | 224 | 256 | 21.57 | 28.08 | 39.49 |
| ResNeXt101_vd_64x4d | 224 | 256 | 21.57 | 28.22 | 39.70 |
| ResNeXt152_32x4d | 224 | 256 | 17.14 | 25.11 | 33.79 |
| ResNeXt152_vd_32x4d | 224 | 256 | 16.99 | 25.29 | 33.85 |
| ResNeXt152_64x4d | 224 | 256 | 33.07 | 42.05 | 59.13 |
| ResNeXt152_vd_64x4d | 224 | 256 | 33.30 | 42.41 | 59.42 |
| SE_ResNet18_vd | 224 | 256 | 1.48 | 2.70 | 4.32 |
| SE_ResNet34_vd | 224 | 256 | 2.42 | 3.69 | 6.29 |
| SE_ResNet50_vd | 224 | 256 | 3.11 | 5.99 | 9.34 |
| SE_ResNeXt50_32x4d | 224 | 256 | 6.39 | 11.01 | 14.94 |
| SE_ResNeXt50_vd_32x4d | 224 | 256 | 7.04 | 11.57 | 16.01 |
| SE_ResNeXt101_32x4d | 224 | 256 | 13.31 | 21.85 | 28.77 |
| SENet154_vd | 224 | 256 | 34.83 | 51.22 | 69.74 |
| Res2Net50_vd_26w_4s_ssld | 224 | 256 | 3.58 | 6.35 | 9.52 |
| Res2Net101_vd_26w_4s_ssld | 224 | 256 | 6.33 | 11.02 | 16.11 |
| Res2Net200_vd_26w_4s_ssld | 224 | 256 | 11.47 | 19.75 | 28.83 |
<a
name=
'4'
></a>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录