diff --git a/ppcls/arch/backbone/model_zoo/levit.py b/ppcls/arch/backbone/model_zoo/levit.py index 55c5817f5c4fc9c188fc99897a46e6b925793570..56d8aa349b80bb16747d38f56c93296f6f71472a 100644 --- a/ppcls/arch/backbone/model_zoo/levit.py +++ b/ppcls/arch/backbone/model_zoo/levit.py @@ -128,10 +128,10 @@ class Residual(nn.Layer): def forward(self, x): if self.training and self.drop > 0: - return paddle.add(x, - self.m(x) * paddle.rand( - x.size(0), 1, 1, device=x.device).ge_( - self.drop).div(1 - self.drop).detach()) + y = paddle.rand( + shape=[x.shape[0], 1, 1]).__ge__(self.drop).astype("float32") + y = y.divide(paddle.full_like(y, 1 - self.drop)) + return paddle.add(x, y) else: return paddle.add(x, self.m(x)) @@ -221,8 +221,6 @@ class Subsample(nn.Layer): def forward(self, x): B, N, C = x.shape - #x = paddle.reshape(x, [B, self.resolution, self.resolution, - # C])[:, ::self.stride, ::self.stride] x = paddle.reshape(x, [B, self.resolution, self.resolution, C]) end1, end2 = x.shape[1], x.shape[2] x = x[:, 0:end1:self.stride, 0:end2:self.stride] @@ -428,7 +426,7 @@ class LeViT(nn.Layer): x = paddle.transpose(x, perm=[0, 2, 1]) x = self.blocks(x) x = x.mean(1) - x = paddle.reshape(x, [-1, 384]) + x = paddle.reshape(x, [-1, x.shape[-1]]) if self.distillation: x = self.head(x), self.head_dist(x) if not self.training: