提交 9d6ee55f 编写于 作者: W weishengyu

update index page

上级 44389ef7
...@@ -7,6 +7,8 @@ ...@@ -7,6 +7,8 @@
飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新** **近期更新**
- 2021.10.31 优化文档,新增饮料识别demo
- 2021.10.23 新增轻量级检测、特征提取模型,新增DeepHash模块,检索模块切换为faiss,支持PaddleServing和PaddleSlim
- 2021.09.17 增加PaddleClas自研PP-LCNet系列模型, 这些模型在Intel CPU上有较强的竞争力。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf)或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/ImageNet_models_cn.md)下载。 - 2021.09.17 增加PaddleClas自研PP-LCNet系列模型, 这些模型在Intel CPU上有较强的竞争力。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf)或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/ImageNet_models_cn.md)下载。
- 2021.08.11 更新7个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md) - 2021.08.11 更新7个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。 - 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。
...@@ -89,7 +91,7 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。 ...@@ -89,7 +91,7 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。
## 图像识别系统介绍 ## 图像识别系统介绍
<div align="center"> <div align="center">
<img src="./docs/images/structure.png" width = "400" /> <img src="./docs/images/structure.jpg" width = "400" />
</div> </div>
整个图像识别系统分为三步:(1)通过一个目标检测模型,检测图像物体候选区域(2)对每个候选区域进行特征提取(3)与检索库中图像进行特征匹配,提取识别结果。 整个图像识别系统分为三步:(1)通过一个目标检测模型,检测图像物体候选区域(2)对每个候选区域进行特征提取(3)与检索库中图像进行特征匹配,提取识别结果。
...@@ -99,6 +101,10 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。 ...@@ -99,6 +101,10 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。
<a name="识别效果展示"></a> <a name="识别效果展示"></a>
## 更多效果展示 [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images) ## 更多效果展示 [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images)
- 瓶装饮料识别
<div align="center">
<img src="docs/images/drink_demo.gif">
</div>
- 商品识别 - 商品识别
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/18028216/122769644-51604f80-d2d7-11eb-8290-c53b12a5c1f6.gif" width = "400" /> <img src="https://user-images.githubusercontent.com/18028216/122769644-51604f80-d2d7-11eb-8290-c53b12a5c1f6.gif" width = "400" />
......
...@@ -83,7 +83,7 @@ Quick experience of image recognition:[Link](./docs/en/tutorials/quick_start_r ...@@ -83,7 +83,7 @@ Quick experience of image recognition:[Link](./docs/en/tutorials/quick_start_r
## Introduction to Image Recognition Systems ## Introduction to Image Recognition Systems
<div align="center"> <div align="center">
<img src="./docs/images/mainpage/recognition_pipeline_en.png" width = "400" /> <img src="./docs/images/structure.jpg" width = "400" />
</div> </div>
Image recognition can be divided into three steps: Image recognition can be divided into three steps:
......
Global:
rec_inference_model_dir: "./models/general_PPLCNet_x2_5_lite_v1.0_infer"
batch_size: 32
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: False
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
RecPreProcess:
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
RecPostProcess: null
# indexing engine config
IndexProcess:
index_method: "HNSW32" # supported: HNSW32, IVF, Flat
index_dir: "./drink_dataset/index"
image_root: "./drink_dataset"
data_file: "./drink_dataset/drink_label.txt"
index_operation: "new" # suported: "append", "remove", "new"
delimiter: " "
dist_type: "IP"
embedding_size: 512
Global:
infer_imgs: "./recognition_demo_data_v1.2/test_drinks/hongniu_1.jpg"
det_inference_model_dir: "./models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer"
rec_inference_model_dir: "./models/general_PPLCNet_x2_5_lite_v1.0_infer"
rec_nms_thresold: 0.05
batch_size: 1
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
labe_list:
- foreground
# inference engine config
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
DetPreProcess:
transform_ops:
- DetResize:
interp: 2
keep_ratio: false
target_size: [640, 640]
- DetNormalizeImage:
is_scale: true
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
- DetPermute: {}
DetPostProcess: {}
RecPreProcess:
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
RecPostProcess: null
# indexing engine config
IndexProcess:
index_dir: "./drink_dataset/index"
return_k: 5
score_thres: 0.4
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册