diff --git a/docs/zh_CN/models/ImageNet1k/model_list.md b/docs/zh_CN/models/ImageNet1k/model_list.md index 701a1719c6fa914be08c7a174681d6d4955853a3..6ef0516699c5be4f676ab843aea30f1f790332cc 100644 --- a/docs/zh_CN/models/ImageNet1k/model_list.md +++ b/docs/zh_CN/models/ImageNet1k/model_list.md @@ -636,6 +636,22 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标 [1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 +关于 SwinTransformerV2 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformerV2 系列模型文档](SwinTransformerV2.md)。 + +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| SwinTransformerV2_tiny_patch4_window8_256 | 0.8177 | 0.9588 | - | - | - | 4.3 | 21.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_tiny_patch4_window8_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_tiny_patch4_window8_256_infer.tar) | +| SwinTransformerV2_tiny_patch4_window16_256 | 0.8283 | 0.9623 | - | - | - | 4.4 | 21.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_tiny_patch4_window16_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_tiny_patch4_window16_256_infer.tar) | +| SwinTransformerV2_small_patch4_window8_256 | 0.8373 | 0.9662 | - | - | - | 8.4 | 37.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_small_patch4_window8_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_small_patch4_window8_256_infer.tar) | +| SwinTransformerV2_small_patch4_window16_256 | 0.8414 | 0.9681 | - | - | - | 8.5 | 37.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_small_patch4_window16_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_small_patch4_window16_256_infer.tar) | +| SwinTransformerV2_base_patch4_window8_256 | 0.8419 | 0.9687 | - | - | - | 15.0 | 67.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_base_patch4_window8_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_base_patch4_window8_256_infer.tar) | +| SwinTransformerV2_base_patch4_window16_256 | 0.8458 | 0.9706 | - | - | - | 15.1 | 67.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_base_patch4_window16_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_base_patch4_window16_256_infer.tar) | +| SwinTransformerV2_base_patch4_window24_384[1] | 0.8714 | 0.9824 | - | - | - | 34.0 | 67.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_base_patch4_window24_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_base_patch4_window24_384_22kto1k_infer.tar) | +| SwinTransformerV2_large_patch4_window16_256[1] | 0.8689 | 0.9804 | - | - | - | 33.8 | 149.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_large_patch4_window16_256_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_large_patch4_window16_256_22kto1k_infer.tar) | +| SwinTransformerV2_large_patch4_window24_384[1] | 0.8747 | 0.9827 | - | - | - | 76.1 | 149.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_large_patch4_window24_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformerV2_large_patch4_window24_384_22kto1k_infer.tar) | + +[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 + ## Twins 系列 [[34](#ref34)]