diff --git a/deploy/configs/PULC/person_attribute/inference_person_attribute.yaml b/deploy/configs/PULC/person_attribute/inference_person_attribute.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d5be2a3568291d0a31a7026974fc22ecf54a8f4c
--- /dev/null
+++ b/deploy/configs/PULC/person_attribute/inference_person_attribute.yaml
@@ -0,0 +1,32 @@
+Global:
+ infer_imgs: "./images/PULC/person_attribute/090004.jpg"
+ inference_model_dir: "./models/person_attribute_infer"
+ batch_size: 1
+ use_gpu: True
+ enable_mkldnn: True
+ cpu_num_threads: 10
+ benchmark: False
+ use_fp16: False
+ ir_optim: True
+ use_tensorrt: False
+ gpu_mem: 8000
+ enable_profile: False
+
+PreProcess:
+ transform_ops:
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ channel_num: 3
+ - ToCHWImage:
+
+PostProcess:
+ main_indicator: PersonAttribute
+ PersonAttribute:
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
diff --git a/deploy/configs/inference_attr.yaml b/deploy/configs/inference_attr.yaml
index b49e2af6482e72e01716faceefb8676d87c08347..88f73db5419414812450b768ac783982386f0a78 100644
--- a/deploy/configs/inference_attr.yaml
+++ b/deploy/configs/inference_attr.yaml
@@ -25,9 +25,9 @@ PreProcess:
- ToCHWImage:
PostProcess:
- main_indicator: Attribute
- Attribute:
+ main_indicator: PersonAttribute
+ PersonAttribute:
threshold: 0.5 #default threshold
glasses_threshold: 0.3 #threshold only for glasses
hold_threshold: 0.6 #threshold only for hold
-
\ No newline at end of file
+
diff --git a/deploy/images/PULC/person_attribute/090004.jpg b/deploy/images/PULC/person_attribute/090004.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..140694eeec3d2925303e8c0d544ef5979cd78219
Binary files /dev/null and b/deploy/images/PULC/person_attribute/090004.jpg differ
diff --git a/deploy/images/PULC/person_attribute/090007.jpg b/deploy/images/PULC/person_attribute/090007.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9fea2e7c9e0047a8b59606877ad41fe24bf2e24c
Binary files /dev/null and b/deploy/images/PULC/person_attribute/090007.jpg differ
diff --git a/deploy/python/postprocess.py b/deploy/python/postprocess.py
index a7e7f7b2e76bdbf9fb32ee61faa82c15b0d72ee5..23a803e284361e98b60f193c450318536d992937 100644
--- a/deploy/python/postprocess.py
+++ b/deploy/python/postprocess.py
@@ -189,7 +189,7 @@ class Binarize(object):
return byte
-class Attribute(object):
+class PersonAttribute(object):
def __init__(self,
threshold=0.5,
glasses_threshold=0.3,
@@ -277,8 +277,7 @@ class Attribute(object):
threshold_list[18] = self.hold_threshold
pred_res = (np.array(res) > np.array(threshold_list)
).astype(np.int8).tolist()
-
- batch_res.append([label_res, pred_res])
+ batch_res.append({"attributes": label_res, "output": pred_res})
return batch_res
diff --git a/deploy/python/predict_cls.py b/deploy/python/predict_cls.py
index 90e14bcb36cc9d1e38391634806fa36d7125c3fe..49bf62fa3060b9336a3438b2ee5c25b2bac49667 100644
--- a/deploy/python/predict_cls.py
+++ b/deploy/python/predict_cls.py
@@ -138,7 +138,7 @@ def main(config):
continue
batch_results = cls_predictor.predict(batch_imgs)
for number, result_dict in enumerate(batch_results):
- if "Attribute" in config[
+ if "PersonAttribute" in config[
"PostProcess"] or "VehicleAttribute" in config[
"PostProcess"]:
filename = batch_names[number]
diff --git a/docs/images/PULC/docs/person_attribute_data_demo.png b/docs/images/PULC/docs/person_attribute_data_demo.png
new file mode 100644
index 0000000000000000000000000000000000000000..c9b276af0a554bbe07d807224d56fbbe5e2b7400
Binary files /dev/null and b/docs/images/PULC/docs/person_attribute_data_demo.png differ
diff --git a/docs/zh_CN/PULC/PULC_person_attribute.md b/docs/zh_CN/PULC/PULC_person_attribute.md
new file mode 100644
index 0000000000000000000000000000000000000000..c5f191c36b5bdf8a36f2eaa9458fac4ea5213b7f
--- /dev/null
+++ b/docs/zh_CN/PULC/PULC_person_attribute.md
@@ -0,0 +1,431 @@
+# PULC 人体属性识别模型
+
+------
+
+
+## 目录
+
+- [1. 模型和应用场景介绍](#1)
+- [2. 模型快速体验](#2)
+- [3. 模型训练、评估和预测](#3)
+ - [3.1 环境配置](#3.1)
+ - [3.2 数据准备](#3.2)
+ - [3.2.1 数据集来源](#3.2.1)
+ - [3.2.2 数据集获取](#3.2.2)
+ - [3.3 模型训练](#3.3)
+ - [3.4 模型评估](#3.4)
+ - [3.5 模型预测](#3.5)
+- [4. 模型压缩](#4)
+ - [4.1 SKL-UGI 知识蒸馏](#4.1)
+ - [4.1.1 教师模型训练](#4.1.1)
+ - [4.1.2 蒸馏训练](#4.1.2)
+- [5. 超参搜索](#5)
+- [6. 模型推理部署](#6)
+ - [6.1 推理模型准备](#6.1)
+ - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
+ - [6.1.2 直接下载 inference 模型](#6.1.2)
+ - [6.2 基于 Python 预测引擎推理](#6.2)
+ - [6.2.1 预测单张图像](#6.2.1)
+ - [6.2.2 基于文件夹的批量预测](#6.2.2)
+ - [6.3 基于 C++ 预测引擎推理](#6.3)
+ - [6.4 服务化部署](#6.4)
+ - [6.5 端侧部署](#6.5)
+ - [6.6 Paddle2ONNX 模型转换与预测](#6.6)
+
+
+
+
+## 1. 模型和应用场景介绍
+
+该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的人体属性识别模型。该模型可以广泛应用于行人分析、行人跟踪等场景。
+
+下表列出了不同人体属性识别模型的相关指标,前两行展现了使用 SwinTransformer_tiny、Res2Net200_vd_26w_4s 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
+
+
+| 模型 | ma(%) | 延时(ms) | 存储(M) | 策略 |
+|-------|-----------|----------|---------------|---------------|
+| Res2Net200_vd_26w_4s | 81.25 | 77.51 | 293 | 使用ImageNet预训练模型 |
+| SwinTransformer_tiny | 80.17 | 89.51 | 107 | 使用ImageNet预训练模型 |
+| MobileNetV3_small_x0_35 | 70.79 | 2.90 | 1.7 | 使用ImageNet预训练模型 |
+| PPLCNet_x1_0 | 76.31 | 2.01 | 6.6 | 使用ImageNet预训练模型 |
+| PPLCNet_x1_0 | 77.31 | 2.01 | 6.6 | 使用SSLD预训练模型 |
+| PPLCNet_x1_0 | 77.71 | 2.01 | 6.6 | 使用SSLD预训练模型+EDA策略|
+| PPLCNet_x1_0 | 78.59 | 2.01 | 6.6 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
+
+从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 和 SwinTransformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度也大幅下降。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 5.5%,于此同时,速度更快。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升 1%,进一步地,当融合EDA策略后,精度可以再提升 0.4%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.88%。此时,PPLCNet_x1_0 的精度与 SwinTransformer_tiny 仅相差1.58%,但是速度快 44 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
+
+**备注:**
+
+* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)。
+
+
+
+
+## 2. 模型快速体验
+
+
+
+## 2. 模型快速体验
+
+
+
+### 2.1 安装 paddleclas
+
+使用如下命令快速安装 paddlepaddle, paddleclas
+
+```
+pip3 install paddlepaddle paddleclas
+```
+
+
+### 2.2 预测
+
+* 使用命令行快速预测
+
+```bash
+paddleclas --model_name=person_attribute --infer_imgs=deploy/images/PULC/person_attribute/090004.jpg
+```
+
+结果如下:
+```
+>>> result
+待补充
+```
+
+**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
+
+
+* 在 Python 代码中预测
+```python
+import paddleclas
+model = paddleclas.PaddleClas(model_name="person_attribute")
+result = model.predict(input_data="deploy/images/PULC/person_attribute/090004.jpg")
+print(next(result))
+```
+
+**备注**:`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
+
+```
+>>> result
+待补充
+```
+
+
+
+## 3. 模型训练、评估和预测
+
+
+
+### 3.1 环境配置
+
+* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
+
+
+
+### 3.2 数据准备
+
+
+
+#### 3.2.1 数据集来源
+
+本案例中所使用的数据为[pa100k 数据集](https://www.v7labs.com/open-datasets/pa-100k)。
+
+
+
+#### 3.2.2 数据集获取
+
+部分数据可视化如下所示。
+
+
+
+
+
+
+我们将原始数据转换成了 PaddleClas 多标签可读的数据格式,可以从[这里]()下载。
+
+进入 PaddleClas 目录。
+
+```
+cd path_to_PaddleClas
+```
+
+进入 `dataset/` 目录,下载并解压有人/无人场景的数据。
+
+```shell
+cd dataset
+wget https://paddleclas.bj.bcebos.com/data/PULC/pa100k.tar
+tar -xf pa100k.tar
+cd ../
+```
+
+执行上述命令后,`dataset/` 下存在 `pa100k` 目录,该目录中具有以下数据:
+
+
+执行上述命令后,`pa100k`目录中具有以下数据:
+
+```
+pa100k
+├── train
+│ ├── 000001.jpg
+│ ├── 000002.jpg
+...
+├── val
+│ ├── 080001.jpg
+│ ├── 080002.jpg
+...
+├── test
+│ ├── 090001.jpg
+│ ├── 090002.jpg
+...
+...
+├── train_list.txt
+├── train_val_list.txt
+├── val_list.txt
+├── test_list.txt
+```
+
+其中`train/`、`val/`、`test/`分别为训练集、验证集和测试集。`train_list.txt`、`val_list.txt`、`test_list.txt`分别为训练集、验证集、测试集的标签文件。在本例子中,`test_list.txt`暂时没有使用。
+
+
+
+
+### 3.3 模型训练
+
+
+在 `ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
+```
+
+验证集的最佳指标在 `90.07%` 左右(数据集较小,一般有0.3%左右的波动)。
+
+
+
+
+### 3.4 模型评估
+
+训练好模型之后,可以通过以下命令实现对模型指标的评估。
+
+```bash
+python3 tools/eval.py \
+ -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
+```
+
+其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
+
+
+
+### 3.5 模型预测
+
+模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
+
+```bash
+python3 tools/infer.py \
+ -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/PPLCNet_x1_0/best_model
+```
+
+输出结果如下:
+
+```
+[{'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}]
+```
+
+**备注:**
+
+* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
+
+* 默认是对 `deploy/images/PULC/person_attribute/090004.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
+
+
+
+## 4. 模型压缩
+
+
+
+### 4.1 SKL-UGI 知识蒸馏
+
+SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)。
+
+
+
+#### 4.1.1 教师模型训练
+
+复用 `ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
+ -o Arch.name=ResNet101_vd
+```
+
+验证集的最佳指标为 `80.10%` 左右,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。
+
+
+
+#### 4.1.2 蒸馏训练
+
+配置文件`ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml \
+ -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
+```
+
+验证集的最佳指标为 `78.5%` 左右,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。
+
+
+
+
+## 5. 超参搜索
+
+在 [3.2 节](#3.2)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
+
+**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
+
+
+
+## 6. 模型推理部署
+
+
+
+### 6.1 推理模型准备
+
+Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
+
+当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
+
+
+
+### 6.1.1 基于训练得到的权重导出 inference 模型
+
+此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
+
+```bash
+python3 tools/export_model.py \
+ -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/DistillationModel/best_model_student \
+ -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_attribute_infer
+```
+执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_person_attribute_infer` 文件夹,`models` 文件夹下应有如下文件结构:
+
+```
+├── PPLCNet_x1_0_person_attribute_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
+
+
+
+### 6.1.2 直接下载 inference 模型
+
+[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
+
+```
+cd deploy/models
+# 下载 inference 模型并解压
+wget https://paddleclas.bj.bcebos.com/models/PULC/person_attribute_infer.tar && tar -xf person_attribute_infer.tar
+```
+
+解压完毕后,`models` 文件夹下应有如下文件结构:
+
+```
+├── person_attribute_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+
+
+### 6.2 基于 Python 预测引擎推理
+
+
+
+
+#### 6.2.1 预测单张图像
+
+返回 `deploy` 目录:
+
+```
+cd ../
+```
+
+运行下面的命令,对图像 `./images/PULC/person_attribute/090004.jpg` 进行车辆属性识别。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_person_attribute.yaml -o Global.use_gpu=True
+# 使用下面的命令使用 CPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_person_attribute.yaml -o Global.use_gpu=False
+```
+
+输出结果如下。
+
+```
+090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
+```
+
+
+
+#### 6.2.2 基于文件夹的批量预测
+
+如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
+python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_person_attribute.yaml -o Global.infer_imgs="./images/PULC/person_attribute/"
+```
+
+终端中会输出该文件夹内所有图像的属性识别结果,如下所示。
+
+```
+090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
+090007.jpg: {'attributes': ['Female', 'Age18-60', 'Side', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'No bag', 'Upper: ShortSleeve', 'Lower: Skirt&Dress', 'No boots'], 'output': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]}
+```
+
+
+
+### 6.3 基于 C++ 预测引擎推理
+
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+
+
+
+### 6.4 服务化部署
+
+Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
+
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+
+
+
+### 6.5 端侧部署
+
+Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
+
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+
+
+
+### 6.6 Paddle2ONNX 模型转换与预测
+
+Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
+
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
diff --git a/ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml b/ppcls/configs/PULC/person_attribute/MobileNetV3_small_x0_35.yaml
similarity index 75%
rename from ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
rename to ppcls/configs/PULC/person_attribute/MobileNetV3_small_x0_35.yaml
index 84d21e6eb55fb27545cec0c1c87e32ea9b56e92c..94b443832cd2244ac900a85f78f6ab2ac05cb848 100644
--- a/ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
+++ b/ppcls/configs/PULC/person_attribute/MobileNetV3_small_x0_35.yaml
@@ -4,11 +4,11 @@ Global:
pretrained_model: null
output_dir: "./output/"
device: "gpu"
- save_interval: 5
+ save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 20
- print_batch_step: 20
+ print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 192]
@@ -17,7 +17,7 @@ Global:
# model architecture
Arch:
- name: "MobileNetV3_large_x1_0"
+ name: "MobileNetV3_small_x0_35"
pretrained: True
class_num: 26
@@ -52,7 +52,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/train_val_list.txt"
+ cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -85,7 +85,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/test_list.txt"
+ cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -107,6 +107,26 @@ DataLoader:
num_workers: 4
use_shared_memory: True
+Infer:
+ infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: PersonAttribute
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
diff --git a/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml b/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
index 13e468a3c3629c4e3b32111c7ae955aa45b63650..b042ad757421f99572f6e2df3a7fb3cec4a7a510 100644
--- a/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
+++ b/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
@@ -53,7 +53,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/train_val_list.txt"
+ cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -99,7 +99,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/test_list.txt"
+ cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -121,6 +121,26 @@ DataLoader:
num_workers: 4
use_shared_memory: True
+Infer:
+ infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: PersonAttribute
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
diff --git a/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml b/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
index 3dc4b76714c04157c9020489097727d844498316..bd6503488f4730599c98d2f5889b7bf87aa0ba7a 100644
--- a/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
+++ b/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
@@ -72,14 +72,13 @@ Optimizer:
coeff: 0.0005
-# data loader for train and eval
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/train_val_list.txt"
+ cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -125,7 +124,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/test_list.txt"
+ cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -147,7 +146,26 @@ DataLoader:
num_workers: 4
use_shared_memory: True
-
+Infer:
+ infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: PersonAttribute
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
diff --git a/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml b/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
index d575f5320c5f442f272c86949f209b2a2e072fe6..8f6b0d7fede587c09bd0a01286ec62590854d12b 100644
--- a/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
+++ b/ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
@@ -53,7 +53,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/train_val_list.txt"
+ cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -99,7 +99,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k"
- cls_label_path: "dataset/pa100k/test_list.txt"
+ cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -121,6 +121,26 @@ DataLoader:
num_workers: 4
use_shared_memory: True
+Infer:
+ infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: PersonAttribute
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
diff --git a/ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml b/ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
index a94a2a47ea07c045c9cfc1b4c2764d9c1b1e4572..4f7dc273c3d057a4505fa01f198b75411838f3e8 100644
--- a/ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
+++ b/ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
@@ -4,11 +4,11 @@ Global:
pretrained_model: null
output_dir: "./output/"
device: "gpu"
- save_interval: 5
+ save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 20
- print_batch_step: 20
+ print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 192]
@@ -44,7 +44,6 @@ Optimizer:
regularizer:
name: 'L2'
coeff: 0.0005
- #clip_norm: 10
# data loader for train and eval
DataLoader:
@@ -52,7 +51,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/train_val_list.txt"
+ cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -85,7 +84,7 @@ DataLoader:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
- cls_label_path: "dataset/pa100k/test_list.txt"
+ cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
@@ -107,6 +106,26 @@ DataLoader:
num_workers: 4
use_shared_memory: True
+Infer:
+ infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: PersonAttribute
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
diff --git a/ppcls/configs/PULC/person_attribute/SwinTransformer_tiny.yaml b/ppcls/configs/PULC/person_attribute/SwinTransformer_tiny.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..36c3d6aae19b70a56bf1aebe3989fa83f0fcc715
--- /dev/null
+++ b/ppcls/configs/PULC/person_attribute/SwinTransformer_tiny.yaml
@@ -0,0 +1,135 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "SwinTransformer_tiny_patch4_window7_224"
+ pretrained: True
+ class_num: 26
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+ #clip_norm: 10
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/pa100k/"
+ cls_label_path: "dataset/pa100k/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [224, 224]
+ - Padv2:
+ size: [244, 244]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [224, 224]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/pa100k/"
+ cls_label_path: "dataset/pa100k/val_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [224, 224]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [224, 224]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: PersonAttribute
+ threshold: 0.5 #default threshold
+ glasses_threshold: 0.3 #threshold only for glasses
+ hold_threshold: 0.6 #threshold only for hold
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/data/postprocess/__init__.py b/ppcls/data/postprocess/__init__.py
index eafcf3f0087d5f8c4de758272ab591c89a33a39d..6b8b7730bf6ac224cffb9f91ff88f230a14b45bf 100644
--- a/ppcls/data/postprocess/__init__.py
+++ b/ppcls/data/postprocess/__init__.py
@@ -18,7 +18,7 @@ from . import topk, threshoutput
from .topk import Topk, MultiLabelTopk
from .threshoutput import ThreshOutput
-from .attr_rec import VehicleAttribute
+from .attr_rec import VehicleAttribute, PersonAttribute
def build_postprocess(config):
diff --git a/ppcls/data/postprocess/attr_rec.py b/ppcls/data/postprocess/attr_rec.py
index cf0f7a59d9523417bc5025c2a41a09875f97a6f2..a8d492501833ac4ccd83d3aea108e7e34c46cadf 100644
--- a/ppcls/data/postprocess/attr_rec.py
+++ b/ppcls/data/postprocess/attr_rec.py
@@ -69,3 +69,105 @@ class VehicleAttribute(object):
"file_name": file_names[idx]
})
return batch_res
+
+
+
+class PersonAttribute(object):
+ def __init__(self,
+ threshold=0.5,
+ glasses_threshold=0.3,
+ hold_threshold=0.6):
+ self.threshold = threshold
+ self.glasses_threshold = glasses_threshold
+ self.hold_threshold = hold_threshold
+
+ def __call__(self, x, file_names=None):
+ if isinstance(x, dict):
+ x = x['logits']
+ assert isinstance(x, paddle.Tensor)
+ if file_names is not None:
+ assert x.shape[0] == len(file_names)
+ x = F.sigmoid(x).numpy()
+
+ # postprocess output of predictor
+ age_list = ['AgeLess18', 'Age18-60', 'AgeOver60']
+ direct_list = ['Front', 'Side', 'Back']
+ bag_list = ['HandBag', 'ShoulderBag', 'Backpack']
+ upper_list = ['UpperStride', 'UpperLogo', 'UpperPlaid', 'UpperSplice']
+ lower_list = [
+ 'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts',
+ 'Skirt&Dress'
+ ]
+ batch_res = []
+ for idx, res in enumerate(x):
+ res = res.tolist()
+ label_res = []
+ # gender
+ gender = 'Female' if res[22] > self.threshold else 'Male'
+ label_res.append(gender)
+ # age
+ age = age_list[np.argmax(res[19:22])]
+ label_res.append(age)
+ # direction
+ direction = direct_list[np.argmax(res[23:])]
+ label_res.append(direction)
+ # glasses
+ glasses = 'Glasses: '
+ if res[1] > self.glasses_threshold:
+ glasses += 'True'
+ else:
+ glasses += 'False'
+ label_res.append(glasses)
+ # hat
+ hat = 'Hat: '
+ if res[0] > self.threshold:
+ hat += 'True'
+ else:
+ hat += 'False'
+ label_res.append(hat)
+ # hold obj
+ hold_obj = 'HoldObjectsInFront: '
+ if res[18] > self.hold_threshold:
+ hold_obj += 'True'
+ else:
+ hold_obj += 'False'
+ label_res.append(hold_obj)
+ # bag
+ bag = bag_list[np.argmax(res[15:18])]
+ bag_score = res[15 + np.argmax(res[15:18])]
+ bag_label = bag if bag_score > self.threshold else 'No bag'
+ label_res.append(bag_label)
+ # upper
+ upper_res = res[4:8]
+ upper_label = 'Upper:'
+ sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve'
+ upper_label += ' {}'.format(sleeve)
+ for i, r in enumerate(upper_res):
+ if r > self.threshold:
+ upper_label += ' {}'.format(upper_list[i])
+ label_res.append(upper_label)
+ # lower
+ lower_res = res[8:14]
+ lower_label = 'Lower: '
+ has_lower = False
+ for i, l in enumerate(lower_res):
+ if l > self.threshold:
+ lower_label += ' {}'.format(lower_list[i])
+ has_lower = True
+ if not has_lower:
+ lower_label += ' {}'.format(lower_list[np.argmax(lower_res)])
+
+ label_res.append(lower_label)
+ # shoe
+ shoe = 'Boots' if res[14] > self.threshold else 'No boots'
+ label_res.append(shoe)
+
+ threshold_list = [0.5] * len(res)
+ threshold_list[1] = self.glasses_threshold
+ threshold_list[18] = self.hold_threshold
+ pred_res = (np.array(res) > np.array(threshold_list)
+ ).astype(np.int8).tolist()
+
+ batch_res.append({"attributes": label_res, "output": pred_res})
+ return batch_res
+