diff --git a/docs/en/tutorials/quick_start_en.md b/docs/en/tutorials/quick_start_en.md index ad6234980c6ef5252fb31e000d373ec6b24773e1..955955fcfda84cfd5568427e853cf72eb3e45bcc 100644 --- a/docs/en/tutorials/quick_start_en.md +++ b/docs/en/tutorials/quick_start_en.md @@ -171,14 +171,15 @@ python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_ssld_random_erasin It improves by 1.27\% to 96.27\% -* Save ResNet50_vd pretrained model to experience next chapter. + +### Distillation + +* The ResNet50_vd model pretrained on previous chapter will be used as the teacher model to train student model. Save the model to specified directory, command as follows: ```shell cp -r output/ResNet50_vd/19/ ./pretrained/flowers102_R50_vd_final/ ``` -### Distillation - * Use `extra_list.txt` as unlabeled data, Note: * Samples in the `extra_list.txt` and `val_list.txt` don't have intersection * Because of in the source code, label information is unused, This is still unlabeled distillation diff --git a/docs/zh_CN/tutorials/quick_start.md b/docs/zh_CN/tutorials/quick_start.md index 0162303b9782affa65594afa3d287711185081a7..3415ba81962556ce45f7eefee23e8d1a7ea1e68a 100644 --- a/docs/zh_CN/tutorials/quick_start.md +++ b/docs/zh_CN/tutorials/quick_start.md @@ -166,14 +166,13 @@ python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_ssld_random_erasi 最终flowers102验证集上的精度为0.9627,使用数据增广可以使得模型精度再次提升1.27\%。 -* 如果希望体验`3.6节`的知识蒸馏部分,可以首先保存训练得到的ResNet50_vd预训练模型到合适的位置,作为蒸馏时教师模型的预训练模型。脚本如下所示。 + +### 3.6 知识蒸馏小试牛刀 +* 本小节将尝试使用知识蒸馏技术对MobileNetV3_large_x1_0模型进行训练,使用`3.5小节`训练得到的ResNet50_vd模型作为蒸馏所用的教师模型,首先将`3.5小节`训练得到的ResNet50_vd模型保存到指定目录,脚本如下。 ```shell cp -r output/ResNet50_vd/best_model/ ./pretrained/flowers102_R50_vd_final/ ``` - -### 3.6 知识蒸馏小试牛刀 - * 使用flowers102数据集进行模型蒸馏,为了进一步提提升模型的精度,使用`extra_list.txt`充当无标签数据,在这里有几点需要注意: * `extra_list.txt`与`val_list.txt`的样本没有重复,因此可以用于扩充知识蒸馏任务的训练数据。 * 即使引入了有标签的extra_list.txt中的图像,但是代码中没有使用标签信息,因此仍然可以视为无标签的模型蒸馏。