提交 9984080a 编写于 作者: H HydrogenSulfate 提交者: Tingquan Gao

change *.numpy()[0] to float(*) for correct usage of 0-D tensor

上级 e877e6a9
......@@ -324,8 +324,7 @@ class PyramidVisionTransformer(nn.Layer):
self.pos_drops.append(nn.Dropout(p=drop_rate))
dpr = [
x.numpy()[0]
for x in paddle.linspace(0, drop_path_rate, sum(depths))
float(x) for x in paddle.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
cur = 0
......@@ -551,8 +550,7 @@ class ALTGVT(PCPVT):
self.wss = wss
# transformer encoder
dpr = [
x.numpy()[0]
for x in paddle.linspace(0, drop_path_rate, sum(depths))
float(x) for x in paddle.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
cur = 0
self.blocks = nn.LayerList()
......
......@@ -130,8 +130,7 @@ def classification_eval(engine, epoch_id=0):
for key in loss_dict:
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
current_samples)
output_info[key].update(float(loss_dict[key]), current_samples)
# calc metric
if engine.eval_metric_func is not None:
......
......@@ -25,8 +25,8 @@ def update_metric(trainer, out, batch, batch_size):
for key in metric_dict:
if key not in trainer.output_info:
trainer.output_info[key] = AverageMeter(key, '7.5f')
trainer.output_info[key].update(metric_dict[key].numpy()[0],
batch_size)
trainer.output_info[key].update(
float(metric_dict[key]), batch_size)
def update_loss(trainer, loss_dict, batch_size):
......@@ -34,7 +34,7 @@ def update_loss(trainer, loss_dict, batch_size):
for key in loss_dict:
if key not in trainer.output_info:
trainer.output_info[key] = AverageMeter(key, '7.5f')
trainer.output_info[key].update(loss_dict[key].numpy()[0], batch_size)
trainer.output_info[key].update(float(loss_dict[key]), batch_size)
def log_info(trainer, batch_size, epoch_id, iter_id):
......@@ -53,14 +53,13 @@ def log_info(trainer, batch_size, epoch_id, iter_id):
ips_msg = "ips: {:.5f} samples/s".format(
batch_size / trainer.time_info["batch_cost"].avg)
eta_sec = ((trainer.config["Global"]["epochs"] - epoch_id + 1
) * trainer.max_iter - iter_id
) * trainer.time_info["batch_cost"].avg
eta_sec = (
(trainer.config["Global"]["epochs"] - epoch_id + 1
) * trainer.max_iter - iter_id) * trainer.time_info["batch_cost"].avg
eta_msg = "eta: {:s}".format(str(datetime.timedelta(seconds=int(eta_sec))))
logger.info("[Train][Epoch {}/{}][Iter: {}/{}]{}, {}, {}, {}, {}".format(
epoch_id, trainer.config["Global"]["epochs"], iter_id,
trainer.max_iter, lr_msg, metric_msg, time_msg, ips_msg,
eta_msg))
trainer.max_iter, lr_msg, metric_msg, time_msg, ips_msg, eta_msg))
for i, lr in enumerate(trainer.lr_sch):
logger.scaler(
......
......@@ -113,7 +113,7 @@ class mAP(nn.Layer):
precision_mask = paddle.multiply(equal_flag, precision)
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
axis=1)
metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
metric_dict["mAP"] = float(paddle.mean(ap))
return metric_dict
......@@ -157,7 +157,7 @@ class mINP(nn.Layer):
hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
mINP = paddle.mean(all_INP)
metric_dict["mINP"] = mINP.numpy()[0]
metric_dict["mINP"] = float(mINP)
return metric_dict
......@@ -362,7 +362,7 @@ class HammingDistance(MultiLabelMetric):
metric_dict["HammingDistance"] = paddle.to_tensor(
hamming_loss(target, preds))
self.avg_meters["HammingDistance"].update(
metric_dict["HammingDistance"].numpy()[0], output.shape[0])
float(metric_dict["HammingDistance"]), output.shape[0])
return metric_dict
......@@ -402,7 +402,7 @@ class AccuracyScore(MultiLabelMetric):
sum(tps) + sum(tns) + sum(fns) + sum(fps))
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
self.avg_meters["AccuracyScore"].update(
metric_dict["AccuracyScore"].numpy()[0], output.shape[0])
float(metric_dict["AccuracyScore"]), output.shape[0])
return metric_dict
......
......@@ -47,7 +47,7 @@ class AverageMeter(object):
@property
def avg_info(self):
if isinstance(self.avg, paddle.Tensor):
self.avg = self.avg.numpy()[0]
self.avg = float(self.avg)
return "{}: {:.5f}".format(self.name, self.avg)
@property
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册