From 991a2a3bf412e779494317a295755399f864cf9a Mon Sep 17 00:00:00 2001 From: gaotingquan Date: Tue, 14 Jun 2022 08:35:51 +0000 Subject: [PATCH] docs: add en doc --- docs/en/PULC/PULC_person_exists_en.md | 457 ++++++++++++++++++++++++++ 1 file changed, 457 insertions(+) create mode 100644 docs/en/PULC/PULC_person_exists_en.md diff --git a/docs/en/PULC/PULC_person_exists_en.md b/docs/en/PULC/PULC_person_exists_en.md new file mode 100644 index 00000000..d169ab2f --- /dev/null +++ b/docs/en/PULC/PULC_person_exists_en.md @@ -0,0 +1,457 @@ +# PULC Classification Model of Someone or Nobody + +------ + +## Catalogue + +- [1. Introduction](#1) +- [2. Quick Start](#2) + - [2.1 PaddlePaddle Installation](#2.1) + - [2.2 PaddleClas Installation](#2.2) + - [2.3 Prediction](#2.3) +- [3. Training, Evaluation and Inference](#3) + - [3.1 Installation](#3.1) + - [3.2 Dataset](#3.2) + - [3.2.1 Dataset Introduction](#3.2.1) + - [3.2.2 Getting Dataset](#3.2.2) + - [3.3 Training](#3.3) + - [3.4 Evaluation](#3.4) + - [3.5 Inference](#3.5) +- [4. Model Compression](#4) + - [4.1 SKL-UGI Knowledge Distillation](#4.1) + - [4.1.1 Teacher Model Training](#4.1.1) + - [4.1.2 Knowledge Distillation Training](#4.1.2) +- [5. SHAS](#5) +- [6. Inference Deployment](#6) + - [6.1 Getting Paddle Inference Model](#6.1) + - [6.1.1 Exporting Paddle Inference Model](#6.1.1) + - [6.1.2 Downloading Inference Model](#6.1.2) + - [6.2 Prediction with Python](#6.2) + - [6.2.1 Image Prediction](#6.2.1) + - [6.2.2 Images Prediction](#6.2.2) + - [6.3 Deployment with C++](#6.3) + - [6.4 Deployment as Service](#6.4) + - [6.5 Deployment on Mobile](#6.5) + - [6.6 To ONNX and Deployment](#6.6) + + + + +## 1. Introduction + +This case provides a way for users to quickly build a lightweight, high-precision and practical classification model of human exists using PaddleClas PULC (Practical Ultra Lightweight Classification). The model can be widely used in monitoring scenarios, personnel access control scenarios, massive data filtering scenarios, etc. + +The following table lists the relevant indicators of the model. The first two lines means that using SwinTransformer_tiny and MobileNetV3_small_x0_35 as the backbone to training. The third to sixth lines means that the backbone is replaced by PPLCNet, additional use of EDA strategy and additional use of EDA strategy and SKL-UGI knowledge distillation strategy. + +| Backbone | Tpr(%) | Latency(ms) | Size(M)| Training Strategy | +|-------|-----------|----------|---------------|---------------| +| SwinTranformer_tiny | 95.69 | 95.30 | 107 | using ImageNet pretrained | +| MobileNetV3_small_x0_35 | 68.25 | 2.85 | 1.6 | using ImageNet pretrained | +| PPLCNet_x1_0 | 89.57 | 2.12 | 6.5 | using ImageNet pretrained | +| PPLCNet_x1_0 | 92.10 | 2.12 | 6.5 | using SSLD pretrained | +| PPLCNet_x1_0 | 93.43 | 2.12 | 6.5 | using SSLD pretrained + EDA strategy | +| PPLCNet_x1_0 | 95.60 | 2.12 | 6.5 | using SSLD pretrained + EDA strategy + SKL-UGI knowledge distillation strategy| + +It can be seen that higt precision can be getted when backbone is SwinTranformer_tiny, but the speed is slow. Replacing backbone with the lightweight model MobileNetV3_small_x0_35, the speed can be greatly improved, but the TPR will be greatly reduced. Replacing backbone with faster backbone PPLCNet_x1_0, the TPR is higher more 20 percentage points higher than MobileNetv3_small_x0_35. At the same time, the speed can be more than 20% faster. After additional using the SSLD pretrained, the TPR can be improved by about 2.6 percentage points without affecting the reasoning speed. Further, additional using the EDA strategy, the TPR can be increased by 1.3 percentage points. Finally, after additional using the SKL-UGI knowledge distillation, the TPR can be further improved by 2.2 percentage points. At this point, the precision close to that of SwinTranformer_tiny is obtained, but the speed is more than 40 times faster. The training method and deployment instructions of PULC will be introduced in detail below. + +**备注:** + +* About `Tpr` metric, please refer to [3.2 section](#3.2) for more information . +* The Latency is tested based on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz. The MKLDNN is enabled and the number of threads is 10. +* About PP-LCNet, please refer to [PP-LCNet Intro](../models/PP-LCNet_en.md) and [PP-LCNet Paper](https://arxiv.org/abs/2109.15099). + + + +## 2. Quick Start + + + +### 2.1 PaddlePaddle Installation + +- Run the following command to install if CUDA9 or CUDA10 is available. + +```bash +python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple +``` + +- Run the following command to install if GPU device is unavailable. + +```bash +python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple +``` + +Please refer to [PaddlePaddle Installation](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/en/install/pip/linux-pip_en.html) for more information about installation, for examples other versions. + + + +### 2.2 PaddleClas wheel Installation + +The command of PaddleClas installation as bellow: + +```bash +pip3 install paddleclas +``` + + + +### 2.3 Prediction + +First, please click [here](https://paddleclas.bj.bcebos.com/data/PULC/pulc_demo_imgs.zip) to download and unzip to get the test demo images. + + +* Prediction with CLI + +```bash +paddleclas --model_name=person_exists --infer_imgs=pulc_demo_imgs/person_exists/objects365_01780782.jpg +``` + +Results: +``` +>>> result +class_ids: [0], scores: [0.9955421453341842], label_names: ['nobody'], filename: pulc_demo_imgs/person_exists/objects365_01780782.jpg +Predict complete! +``` + +**Note**: If you want to test other images, only need to specify the `--infer_imgs` argument, and the directory containing images is also supported. + +* Prediction in Python + +```python +import paddleclas +model = paddleclas.PaddleClas(model_name="person_exists") +result = model.predict(input_data="pulc_demo_imgs/person_exists/objects365_01780782.jpg") +print(next(result)) +``` + +**Note**: The `result` returned by `model.predict()` is an generator, so you need to use the `next()` function or `for` to call it. And it will predict with batch with size of `batch_size` and return the prediction results when called. The `batch_size` default is 1, and you also specify the `batch_size` when instantiating, such as `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`. The result of demo above: + +``` +>>> result +[{'class_ids': [0], 'scores': [0.9955421453341842], 'label_names': ['nobody'], 'filename': 'pulc_demo_imgs/person_exists/objects365_01780782.jpg'}] +``` + + + +## 3. Training, Evaluation and Inference + + + +### 3.1 Installation + +Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. + + + +### 3.2 Dataset + + + +#### 3.2.1 Dataset Introduction + +All datasets used in this case are open source data. Train data is the subset of [MS-COCO](https://cocodataset.org/#overview) training data. And the validation data is the subset of [Object365](https://www.objects365.org/overview.html) training data. ImageNet_val is [ImageNet-1k](https://www.image-net.org/) validation data. + + + +#### 3.2.2 Getting Dataset + +The data used in this case can be getted by processing the open source data. The detailed processes are as follows: + +- Training data. This case deals with the annotation file of MS-COCO data training data. If a certain image contains the label of "person" and the area of this box is greater than 10% in the whole image, it is considered that the image contains human. If there is no label of "person" in a certain image, It is considered that the image does not contain human. After processing, 92964 pieces of available data were obtained, including 39813 pieces of human data and 53151 pieces of unmanned data +- Validation data: randomly select a small part of data from object365 data, use the better model trained on ms-coco to predict these data, take the intersection between the prediction results and the data annotation file, and filter the intersection results into the validation set according to the method of obtaining the training set. After processing, 27820 pieces of available data were obtained. There are 2255 pieces of data with human and 25565 pieces of data without human. The data visualization of the processed dataset is as follows: + +Some image of the processed dataset is as follows: + +![](../../images/PULC/docs/person_exists_data_demo.png) + +And you can also download the data processed directly. + +``` +cd path_to_PaddleClas +``` + +Enter the 'dataset/' directory, download and unzip the dataset. + +```shell +cd dataset +wget https://paddleclas.bj.bcebos.com/data/PULC/person_exists.tar +tar -xf person_exists.tar +cd ../ +``` + +The datas under `person_exists` directory: + +``` + +├── train +│   ├── 000000000009.jpg +│   ├── 000000000025.jpg +... +├── val +│   ├── objects365_01780637.jpg +│   ├── objects365_01780640.jpg +... +├── ImageNet_val +│   ├── ILSVRC2012_val_00000001.JPEG +│   ├── ILSVRC2012_val_00000002.JPEG +... +├── train_list.txt +├── train_list.txt.debug +├── train_list_for_distill.txt +├── val_list.txt +└── val_list.txt.debug +``` + +Where `train/` and `val/` are training set and validation set respectively. The `train_list.txt` and `val_list.txt` are label files of training data and validation data respectively. The file `train_list.txt.debug` and `val_list.txt.debug` are subset of `train_list.txt` and `val_list.txt` respectively. `ImageNet_val/` is the validation data of ImageNet-1k, which will be used for SKL-UGI konwladeg distillation, and its label file is `train_list_for_distill.txt`. + +**Note**: +* About the contents format of `train_list.txt` and `val_list.txt`, please refer to [Description about Classification Dataset in PaddleClas](../data_preparation/classification_dataset_en.md). +* About the `train_list_for_distill.txt`, please refer to [Knowledge Distillation Label] (../advanced_tutorials/ssld_en.md\3.2). + + + +### 3.3 Training + +The details of training config in `ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml`. The command about training as follows: + +```shell +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + --gpus="0,1,2,3" \ + tools/train.py \ + -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml +``` + +The best metric of validation data is between `0.94` and `0.95`. There would be fluctuations because the data size is small. + +**Note**: + +* The metric Tpr, that describe the True Positive Rate when False Positive Rate is less than a certain threshold(1/1000 used in this case), is one of the commonly used metric for binary classification. About the detaile of Fpr and Tpr, please refer [here](https://en.wikipedia.org/wiki/Receiver_operating_characteristic). +* When evaluation, the best metric TprAtFpr will be printed that include `Fpr`, `Tpr` and the current `threshold`. The `Tpr` means the Recall rate under the current `Fpr`. The `Tpr` higher, the model better. The `threshold` would be used in deployment, which means the classification threshold under best `Fpr` metric. + + + +### 3.4 Evaluation + +After training, you can use the following commands to evaluate the model. + +```bash +python3 tools/eval.py \ + -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \ + -o Global.pretrained_model="output/PPLCNet_x1_0/best_model" +``` + +Among the above command, the argument `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` specify the path of the best model weight file. You can specify other path if needed. + + + +### 3.5 Inference + +After training, you can use the model trained to infer. Command is as follow: + +```python +python3 tools/infer.py \ + -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \ + -o Global.pretrained_model=output/PPLCNet_x1_0/best_model +``` + +The results: + +``` +[{'class_ids': [1], 'scores': [0.9999976], 'label_names': ['someone'], 'file_name': 'deploy/images/PULC/person_exists/objects365_02035329.jpg'}] +``` + +**Note**: + +* Among the above command, argument `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` specify the path of the best model weight file. You can specify other path if needed. +* The default test image is `deploy/images/PULC/person_exists/objects365_02035329.jpg`. And you can test other image, only need to specify the argument `-o Infer.infer_imgs=path_to_test_image`. +* The default threshold is `0.5`. If needed, you can specify the argument `Infer.PostProcess.threshold`, such as: `-o Infer.PostProcess.threshold=0.9794`. And the argument `threshold` is needed to be specified according by specific case. The `0.9794` is the best threshold when `Fpr` is less than `1/1000` in this valuation dataset. + + + +## 4. Model Compression + + + +### 4.1 SKL-UGI Knowledge Distillation + +SKL-UGI is a simple but effective knowledge distillation algrithem proposed by PaddleClas. Please refer to [SKL-UGI 知识蒸馏](../advanced_tutorials/ssld_en.md) for more details. + + + +#### 4.1.1 Teacher Model Training + +Training the teacher model with hyperparameters specified in `ppcls/configs/PULC/person_exists/PPLCNet/PPLCNet_x1_0.yaml`. The command is as follow: + +```shell +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + --gpus="0,1,2,3" \ + tools/train.py \ + -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \ + -o Arch.name=ResNet101_vd +``` + +The best metric of validation data is between `0.96` and `0.98`. The best teacher model weight would be saved in file `output/ResNet101_vd/best_model.pdparams`. + + + +#### 4.1.2 Knowledge Distillation Training + +The training strategy, specified in training config file `ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml`, the teacher model is `ResNet101_vd`, the student model is `PPLCNet_x1_0` and the additional unlabeled training data is validation data of ImageNet1k. The command is as follow: + +```shell +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + --gpus="0,1,2,3" \ + tools/train.py \ + -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml \ + -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model +``` + +The best metri is between `0.95` and `0.97`. The best student model weight would be saved in file `output/DistillationModel/best_model_student.pdparams`. + + + +## 5. SHAS + +The hyperparameters used by [3.2 section](#3.2) and [4.1 section](#4.1) are according by `SHAS` in PaddleClas. If you want to get better results on your own dataset, you can refer to [SHAS](PULC_train_en.md#4-超参搜索) to get better hyperparameters. + +**Note**: This section is optional. Because the search process will take a long time, you can selectively run according to your specific. If not replace the dataset, you can ignore this section. + + + +## 6. Inference Deployment + + + +### 6.1 Getting Paddle Inference Model + +Paddle Inference is the original Inference Library of the PaddlePaddle, provides high-performance inference for server deployment. And compared with directly based on the pre training model, paddle influence can use tools to accelerate prediction, so as to achieve better reasoning performance. Please refer to [Paddle Inference](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html) for more information. + +Paddle Inference need Paddle Inference Model to predict. Two process provided to get Paddle Inference Model. If want to use the provided by PaddleClas, you can download directly, click [Downloading Inference Model](#6.1.2). + + + +### 6.1.1 Exporting Paddle Inference Model + +The command about exporting Paddle Inference Model is as follow: + +```bash +python3 tools/export_model.py \ + -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \ + -o Global.pretrained_model=output/DistillationModel/best_model_student \ + -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_exists_infer +``` + +After running above command, the inference model files would be saved in `deploy/models/PPLCNet_x1_0_person_exists_infer`, as shown below: + +``` +├── PPLCNet_x1_0_person_exists_infer +│ ├── inference.pdiparams +│ ├── inference.pdiparams.info +│ └── inference.pdmodel +``` + +**Note**: The best model is from knowledge distillation training. If not knowledge distillation training, the best model would be saved in `output/PPLCNet_x1_0/best_model.pdparams`. + + + +### 6.1.2 Downloading Inference Model + +The process about exporting to Inference Model could be refer in [6.1.1 subsection](#6.1.1). And you also download directly. + +``` +cd deploy/models +# download the inference model and decompression +wget https://paddleclas.bj.bcebos.com/models/PULC/person_exists_infer.tar && tar -xf person_exists_infer.tar +``` + +After decompression, the structure of directory `models` should be shown below. + +``` +├── person_exists_infer +│ ├── inference.pdiparams +│ ├── inference.pdiparams.info +│ └── inference.pdmodel +``` + + + +### 6.2 Prediction with Python + + + +#### 6.2.1 Image Prediction + +Return the directory `deploy`: + +``` +cd ../ +``` + +Run the following command to classify whether there are people in the image `./images/PULC/person_exists/objects365_02035329.jpg`. + +```shell +# Use the following command to predict with GPU. +python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml +# Use the following command to predict with CPU. +python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.use_gpu=False +``` + +The prediction results: + +``` +objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone'] +``` + +**Note**: The default threshold is `0.5`. If needed, you can specify the argument `Infer.PostProcess.threshold`, such as: `-o Infer.PostProcess.threshold=0.9794`. And the argument `threshold` is needed to be specified according by specific case. The `0.9794` is the best threshold when `Fpr` is less than `1/1000` in this valuation dataset. Please refer to [3.3 section](#3.3) for details. + + + +#### 6.2.2 Images Prediction + +If you want to predict images in directory, please specify the argument `Global.infer_imgs` as directory path by `-o Global.infer_imgs`. The command is as follow. + +```shell +# Use the following command to predict with GPU. If want to replace with CPU, you can add argument -o Global.use_gpu=False +python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.infer_imgs="./images/PULC/person_exists/" +``` + +All prediction results will be printed, as shown below. + +``` +objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody'] +objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone'] +``` + +Among the prediction results above, `someone` means that there is a human in the image, `nobody` means that there is no human in the image. + + + +### 6.3 Deployment with C++ + +PaddleClas provides an example about how to deploy with C++. Please refer to [Deployment with C++](../inference_deployment/cpp_deploy_en.md). + + + +### 6.4 Deployment as Service + +Paddle Serving is a flexible, high-performance carrier for machine learning models, and supports different agreement, such as RESTful, gRPC, bRPC and so on, provides different deployment solutions for a variety of heterogeneous hardware and operating system environments. Please refer [Paddle Serving](https://github.com/PaddlePaddle/Serving) for more information. + +PaddleClas provides an example about how to deploy as service by Paddle Serving. Please refer to [Paddle Serving Deployment](../inference_deployment/paddle_serving_deploy_en.md). + + + +### 6.5 Deployment on Mobile + +Paddle-Lite is an updated version of Paddle-Mobile, an open-open source deep learning framework designed to make it easy to perform inference on mobile, embeded, and IoT devices. It is compatible with PaddlePaddle and pre-trained models from other sources. Please refer to [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) for more information. + +PaddleClas provides an example of how to deploy on mobile by Paddle-Lite. Please refer to [Paddle-Lite deployment](../inference_deployment/paddle_lite_deploy_en.md). + + + +### 6.6 To ONNX and Deployment + +Paddle2ONNX support convert Paddle Inference model to ONNX model. And you can deploy with ONNX model on different inference engine, such as TensorRT, OpenVINO, MNN/TNN, NCNN and so on. About Paddle2ONNX details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX). + +PaddleClas provides an example of how to convert Paddle Inference model to ONNX model by paddle2onnx toolkit and predict by ONNX model. You can refer to [paddle2onnx](../../../deploy/paddle2onnx/readme_en.md) for about deployment details. -- GitLab