未验证 提交 978157e7 编写于 作者: G gaotingquan

fix: fix the bug that DistributedBatchSampler may sample repeatedly

上级 ccd15f51
...@@ -89,9 +89,6 @@ def retrieval_eval(engine, epoch_id=0): ...@@ -89,9 +89,6 @@ def retrieval_eval(engine, epoch_id=0):
def cal_feature(engine, name='gallery'): def cal_feature(engine, name='gallery'):
all_feas = None
all_image_id = None
all_unique_id = None
has_unique_id = False has_unique_id = False
if name == 'gallery': if name == 'gallery':
...@@ -103,6 +100,9 @@ def cal_feature(engine, name='gallery'): ...@@ -103,6 +100,9 @@ def cal_feature(engine, name='gallery'):
else: else:
raise RuntimeError("Only support gallery or query dataset") raise RuntimeError("Only support gallery or query dataset")
batch_feas_list = []
img_id_list = []
unique_id_list = []
max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len( max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len(
dataloader) dataloader)
for idx, batch in enumerate(dataloader): # load is very time-consuming for idx, batch in enumerate(dataloader): # load is very time-consuming
...@@ -140,32 +140,39 @@ def cal_feature(engine, name='gallery'): ...@@ -140,32 +140,39 @@ def cal_feature(engine, name='gallery'):
if engine.config["Global"].get("feature_binarize") == "sign": if engine.config["Global"].get("feature_binarize") == "sign":
batch_feas = paddle.sign(batch_feas).astype("float32") batch_feas = paddle.sign(batch_feas).astype("float32")
if all_feas is None: if paddle.distributed.get_world_size() > 1:
all_feas = batch_feas batch_feas_gather = []
img_id_gather = []
unique_id_gather = []
paddle.distributed.all_gather(batch_feas_gather, batch_feas)
paddle.distributed.all_gather(img_id_gather, batch[1])
batch_feas_list.append(paddle.concat(batch_feas_gather))
img_id_list.append(paddle.concat(img_id_gather))
if has_unique_id: if has_unique_id:
all_unique_id = batch[2] paddle.distributed.all_gather(unique_id_gather, batch[2])
all_image_id = batch[1] unique_id_list.append(paddle.concat(unique_id_gather))
else: else:
all_feas = paddle.concat([all_feas, batch_feas]) batch_feas_list.append(batch_feas)
all_image_id = paddle.concat([all_image_id, batch[1]]) img_id_list.append(batch[1])
if has_unique_id: if has_unique_id:
all_unique_id = paddle.concat([all_unique_id, batch[2]]) unique_id_list.append(batch[2])
if engine.use_dali: if engine.use_dali:
dataloader.reset() dataloader.reset()
if paddle.distributed.get_world_size() > 1: all_feas = paddle.concat(batch_feas_list)
feat_list = [] all_img_id = paddle.concat(img_id_list)
img_id_list = [] if has_unique_id:
unique_id_list = [] all_unique_id = paddle.concat(unique_id_list)
paddle.distributed.all_gather(feat_list, all_feas)
paddle.distributed.all_gather(img_id_list, all_image_id) # just for DistributedBatchSampler issue: repeat sampling
all_feas = paddle.concat(feat_list, axis=0) total_samples = len(
all_image_id = paddle.concat(img_id_list, axis=0) dataloader.dataset) if not engine.use_dali else dataloader.size
all_feas = all_feas[:total_samples]
all_img_id = all_img_id[:total_samples]
if has_unique_id: if has_unique_id:
paddle.distributed.all_gather(unique_id_list, all_unique_id) all_unique_id = all_unique_id[:total_samples]
all_unique_id = paddle.concat(unique_id_list, axis=0)
logger.info("Build {} done, all feat shape: {}, begin to eval..".format( logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
name, all_feas.shape)) name, all_feas.shape))
return all_feas, all_image_id, all_unique_id return all_feas, all_img_id, all_unique_id
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册