未验证 提交 8ffd18b2 编写于 作者: W Walter 提交者: GitHub

Merge pull request #748 from weisy11/develop_reg

modify hrnet
......@@ -37,7 +37,7 @@ def forward(self, inputs):
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = self.avg_pool(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
y = self.out(y)
return y, self.fm
......
......@@ -17,34 +17,34 @@ from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
from paddle import nn
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.functional import upsample
from paddle.nn.initializer import Uniform
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
__all__ = [
"HRNet_W18_C",
"HRNet_W30_C",
"HRNet_W32_C",
"HRNet_W40_C",
"HRNet_W44_C",
"HRNet_W48_C",
"HRNet_W60_C",
"HRNet_W64_C",
"SE_HRNet_W18_C",
"SE_HRNet_W30_C",
"SE_HRNet_W32_C",
"SE_HRNet_W40_C",
"SE_HRNet_W44_C",
"SE_HRNet_W48_C",
"SE_HRNet_W60_C",
"SE_HRNet_W64_C",
]
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer, Identity
MODEL_URLS = {
"HRNet_W18_C": "",
"HRNet_W30_C": "",
"HRNet_W32_C": "",
"HRNet_W40_C": "",
"HRNet_W44_C": "",
"HRNet_W48_C": "",
"HRNet_W60_C": "",
"HRNet_W64_C": "",
"SE_HRNet_W18_C": "",
"SE_HRNet_W30_C": "",
"SE_HRNet_W32_C": "",
"SE_HRNet_W40_C": "",
"SE_HRNet_W44_C": "",
"SE_HRNet_W48_C": "",
"SE_HRNet_W60_C": "",
"SE_HRNet_W64_C": "",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(TheseusLayer):
......@@ -54,136 +54,39 @@ class ConvBNLayer(TheseusLayer):
filter_size,
stride=1,
groups=1,
act="relu",
name=None):
act="relu"):
super(ConvBNLayer, self).__init__()
self._conv = nn.Conv2D(
self.conv = nn.Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
bn_name = name + '_bn'
self._batch_norm = nn.BatchNorm(
self.bn = nn.BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, x, res_dict=None):
y = self._conv(x)
y = self._batch_norm(y)
return y
class Layer1(TheseusLayer):
def __init__(self, num_channels, has_se=False, name=None):
super(Layer1, self).__init__()
self.bottleneck_block_list = []
for i in range(4):
bottleneck_block = self.add_sublayer(
"bb_{}_{}".format(name, i + 1),
BottleneckBlock(
num_channels=num_channels if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False,
name=name + '_' + str(i + 1)))
self.bottleneck_block_list.append(bottleneck_block)
def forward(self, x, res_dict=None):
y = x
for block_func in self.bottleneck_block_list:
y = block_func(y)
return y
class TransitionLayer(TheseusLayer):
def __init__(self, in_channels, out_channels, name=None):
super(TransitionLayer, self).__init__()
num_in = len(in_channels)
num_out = len(out_channels)
out = []
self.conv_bn_func_list = []
for i in range(num_out):
residual = None
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvBNLayer(
num_channels=in_channels[i],
num_filters=out_channels[i],
filter_size=3,
name=name + '_layer_' + str(i + 1)))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvBNLayer(
num_channels=in_channels[-1],
num_filters=out_channels[i],
filter_size=3,
stride=2,
name=name + '_layer_' + str(i + 1)))
self.conv_bn_func_list.append(residual)
def forward(self, x, res_dict=None):
outs = []
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
if conv_bn_func is None:
outs.append(x[idx])
act=None)
self.act = create_act(act)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
def create_act(act):
if act == 'hardswish':
return nn.Hardswish()
elif act == 'relu':
return nn.ReLU()
elif act is None:
return Identity()
else:
if idx < len(x):
outs.append(conv_bn_func(x[idx]))
else:
outs.append(conv_bn_func(x[-1]))
return outs
class Branches(TheseusLayer):
def __init__(self,
block_num,
in_channels,
out_channels,
has_se=False,
name=None):
super(Branches, self).__init__()
self.basic_block_list = []
for i in range(len(out_channels)):
self.basic_block_list.append([])
for j in range(block_num):
in_ch = in_channels[i] if j == 0 else out_channels[i]
basic_block_func = self.add_sublayer(
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
BasicBlock(
num_channels=in_ch,
num_filters=out_channels[i],
has_se=has_se,
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.basic_block_list[i].append(basic_block_func)
def forward(self, x, res_dict=None):
outs = []
for idx, xi in enumerate(x):
conv = xi
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
conv = basic_block_func(conv)
outs.append(conv)
return outs
raise RuntimeError(
'The activation function is not supported: {}'.format(act))
class BottleneckBlock(TheseusLayer):
......@@ -192,8 +95,7 @@ class BottleneckBlock(TheseusLayer):
num_filters,
has_se,
stride=1,
downsample=False,
name=None):
downsample=False):
super(BottleneckBlock, self).__init__()
self.has_se = has_se
......@@ -203,215 +105,175 @@ class BottleneckBlock(TheseusLayer):
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu",
name=name + "_conv1", )
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_conv2")
act="relu")
self.conv3 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_conv3")
act=None)
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_downsample")
act=None)
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
reduction_ratio=16,
name='fc' + name)
reduction_ratio=16)
self.relu = nn.ReLU()
def forward(self, x, res_dict=None):
residual = x
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.downsample:
residual = self.conv_down(x)
residual = self.conv_down(residual)
if self.has_se:
conv3 = self.se(conv3)
y = paddle.add(x=residual, y=conv3)
y = F.relu(y)
return y
x = self.se(x)
x = paddle.add(x=residual, y=x)
x = self.relu(x)
return x
class BasicBlock(TheseusLayer):
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride=1,
has_se=False,
downsample=False,
name=None):
has_se=False):
super(BasicBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
name=name + "_conv1")
stride=1,
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=1,
act=None,
name=name + "_conv2")
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act="relu",
name=name + "_downsample")
act=None)
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
reduction_ratio=16,
name='fc' + name)
def forward(self, input, res_dict=None):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
reduction_ratio=16)
self.relu = nn.ReLU()
if self.downsample:
residual = self.conv_down(input)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv2(x)
if self.has_se:
conv2 = self.se(conv2)
x = self.se(x)
y = paddle.add(x=residual, y=conv2)
y = F.relu(y)
return y
x = paddle.add(x=residual, y=x)
x = self.relu(x)
return x
class SELayer(TheseusLayer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
def __init__(self, num_channels, num_filters, reduction_ratio):
super(SELayer, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = nn.Linear(
self.fc_squeeze = nn.Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
initializer=Uniform(-stdv, stdv)))
self.relu = nn.ReLU()
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = nn.Linear(
self.fc_excitation = nn.Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
bias_attr=ParamAttr(name=name + '_exc_offset'))
def forward(self, input, res_dict=None):
pool = self.pool2d_gap(input)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = F.sigmoid(excitation)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = input * excitation
return out
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
self.sigmoid = nn.Sigmoid()
def forward(self, x, res_dict=None):
residual = x
x = self.pool2d_gap(x)
x = paddle.squeeze(x, axis=[2, 3])
x = self.fc_squeeze(x)
x = self.relu(x)
x = self.fc_excitation(x)
x = self.sigmoid(x)
x = paddle.unsqueeze(x, axis=[2, 3])
x = residual * x
return x
class Stage(TheseusLayer):
def __init__(self,
num_channels,
num_modules,
num_filters,
has_se=False,
multi_scale_output=True,
name=None):
has_se=False):
super(Stage, self).__init__()
self._num_modules = num_modules
self.stage_func_list = []
self.stage_func_list = nn.LayerList()
for i in range(num_modules):
if i == num_modules - 1 and not multi_scale_output:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
multi_scale_output=False,
name=name + '_' + str(i + 1)))
else:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
self.stage_func_list.append(
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
name=name + '_' + str(i + 1)))
self.stage_func_list.append(stage_func)
has_se=has_se))
def forward(self, input, res_dict=None):
out = input
def forward(self, x, res_dict=None):
x = x
for idx in range(self._num_modules):
out = self.stage_func_list[idx](out)
return out
x = self.stage_func_list[idx](x)
return x
class HighResolutionModule(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
has_se=False,
multi_scale_output=True,
name=None):
has_se=False):
super(HighResolutionModule, self).__init__()
self.branches_func = Branches(
block_num=4,
in_channels=num_channels,
out_channels=num_filters,
has_se=has_se,
name=name)
self.basic_block_list = nn.LayerList()
for i in range(len(num_filters)):
self.basic_block_list.append(
nn.Sequential(*[
BasicBlock(
num_channels=num_filters[i],
num_filters=num_filters[i],
has_se=has_se) for j in range(4)]))
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters,
multi_scale_output=multi_scale_output,
name=name)
out_channels=num_filters)
def forward(self, input, res_dict=None):
out = self.branches_func(input)
def forward(self, x, res_dict=None):
out = []
for idx, xi in enumerate(x):
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
xi = basic_block_func(xi)
out.append(xi)
out = self.fuse_func(out)
return out
......@@ -419,246 +281,238 @@ class HighResolutionModule(TheseusLayer):
class FuseLayers(TheseusLayer):
def __init__(self,
in_channels,
out_channels,
multi_scale_output=True,
name=None):
out_channels):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels) if multi_scale_output else 1
self._actual_ch = len(in_channels)
self._in_channels = in_channels
self.residual_func_list = []
for i in range(self._actual_ch):
self.residual_func_list = nn.LayerList()
self.relu = nn.ReLU()
for i in range(len(in_channels)):
for j in range(len(in_channels)):
residual_func = None
if j > i:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
self.residual_func_list.append(
ConvBNLayer(
num_channels=in_channels[j],
num_filters=out_channels[i],
filter_size=1,
stride=1,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.residual_func_list.append(residual_func)
act=None))
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
self.residual_func_list.append(
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[i],
filter_size=3,
stride=2,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
act=None))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
self.residual_func_list.append(
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[j],
filter_size=3,
stride=2,
act="relu",
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
act="relu"))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
def forward(self, input, res_dict=None):
outs = []
def forward(self, x, res_dict=None):
out = []
residual_func_idx = 0
for i in range(self._actual_ch):
residual = input[i]
for i in range(len(self._in_channels)):
residual = x[i]
for j in range(len(self._in_channels)):
if j > i:
y = self.residual_func_list[residual_func_idx](input[j])
xj = self.residual_func_list[residual_func_idx](x[j])
residual_func_idx += 1
y = F.upsample(y, scale_factor=2**(j - i), mode="nearest")
residual = paddle.add(x=residual, y=y)
xj = upsample(xj, scale_factor=2**(j - i), mode="nearest")
residual = paddle.add(x=residual, y=xj)
elif j < i:
y = input[j]
xj = x[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
xj = self.residual_func_list[residual_func_idx](xj)
residual_func_idx += 1
residual = paddle.add(x=residual, y=y)
residual = paddle.add(x=residual, y=xj)
residual = F.relu(residual)
outs.append(residual)
residual = self.relu(residual)
out.append(residual)
return outs
return out
class LastClsOut(TheseusLayer):
def __init__(self,
num_channel_list,
has_se,
num_filters_list=[32, 64, 128, 256],
name=None):
num_filters_list=[32, 64, 128, 256]):
super(LastClsOut, self).__init__()
self.func_list = []
self.func_list = nn.LayerList()
for idx in range(len(num_channel_list)):
func = self.add_sublayer(
"conv_{}_conv_{}".format(name, idx + 1),
self.func_list.append(
BottleneckBlock(
num_channels=num_channel_list[idx],
num_filters=num_filters_list[idx],
has_se=has_se,
downsample=True,
name=name + 'conv_' + str(idx + 1)))
self.func_list.append(func)
downsample=True))
def forward(self, inputs, res_dict=None):
outs = []
for idx, input in enumerate(inputs):
out = self.func_list[idx](input)
outs.append(out)
return outs
def forward(self, x, res_dict=None):
out = []
for idx, xi in enumerate(x):
xi = self.func_list[idx](xi)
out.append(xi)
return out
class HRNet(TheseusLayer):
def __init__(self, width=18, has_se=False, class_dim=1000):
"""
HRNet
Args:
width: int=18. Base channel number of HRNet.
has_se: bool=False. If 'True', add se module to HRNet.
class_num: int=1000. Output num of last fc layer.
"""
def __init__(self, width=18, has_se=False, class_num=1000):
super(HRNet, self).__init__()
self.width = width
self.has_se = has_se
self.channels = {
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
}
self._class_dim = class_dim
channels_2, channels_3, channels_4 = self.channels[width]
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
self._class_num = class_num
channels_2 = [self.width, self.width * 2]
channels_3 = [self.width, self.width * 2, self.width * 4]
channels_4 = [self.width, self.width * 2, self.width * 4, self.width * 8]
self.conv_layer1_1 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="layer1_1")
act='relu')
self.conv_layer1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="layer1_2")
self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")
act='relu')
self.tr1 = TransitionLayer(
in_channels=[256], out_channels=channels_2, name="tr1")
self.layer1 = nn.Sequential(*[
BottleneckBlock(
num_channels=64 if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False)
for i in range(4)
])
self.conv_tr1_1 = ConvBNLayer(
num_channels=256,
num_filters=width,
filter_size=3)
self.conv_tr1_2 = ConvBNLayer(
num_channels=256,
num_filters=width * 2,
filter_size=3,
stride=2
)
self.st2 = Stage(
num_channels=channels_2,
num_modules=num_modules_2,
num_modules=1,
num_filters=channels_2,
has_se=self.has_se,
name="st2")
has_se=self.has_se)
self.tr2 = TransitionLayer(
in_channels=channels_2, out_channels=channels_3, name="tr2")
self.conv_tr2 = ConvBNLayer(
num_channels=width * 2,
num_filters=width * 4,
filter_size=3,
stride=2
)
self.st3 = Stage(
num_channels=channels_3,
num_modules=num_modules_3,
num_modules=4,
num_filters=channels_3,
has_se=self.has_se,
name="st3")
has_se=self.has_se)
self.conv_tr3 = ConvBNLayer(
num_channels=width * 4,
num_filters=width * 8,
filter_size=3,
stride=2
)
self.tr3 = TransitionLayer(
in_channels=channels_3, out_channels=channels_4, name="tr3")
self.st4 = Stage(
num_channels=channels_4,
num_modules=num_modules_4,
num_modules=3,
num_filters=channels_4,
has_se=self.has_se,
name="st4")
has_se=self.has_se)
# classification
num_filters_list = [32, 64, 128, 256]
self.last_cls = LastClsOut(
num_channel_list=channels_4,
has_se=self.has_se,
num_filters_list=num_filters_list,
name="cls_head", )
num_filters_list=num_filters_list)
last_num_filters = [256, 512, 1024]
self.cls_head_conv_list = []
self.cls_head_conv_list = nn.LayerList()
for idx in range(3):
self.cls_head_conv_list.append(
self.add_sublayer(
"cls_head_add{}".format(idx + 1),
ConvBNLayer(
num_channels=num_filters_list[idx] * 4,
num_filters=last_num_filters[idx],
filter_size=3,
stride=2,
name="cls_head_add" + str(idx + 1))))
stride=2))
self.conv_last = ConvBNLayer(
num_channels=1024,
num_filters=2048,
filter_size=1,
stride=1,
name="cls_head_last_conv")
stride=1)
self.pool2d_avg = AdaptiveAvgPool2D(1)
self.avg_pool = nn.AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.out = nn.Linear(
self.fc = nn.Linear(
2048,
class_dim,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
class_num,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
def forward(self, input, res_dict=None):
conv1 = self.conv_layer1_1(input)
conv2 = self.conv_layer1_2(conv1)
def forward(self, x, res_dict=None):
x = self.conv_layer1_1(x)
x = self.conv_layer1_2(x)
la1 = self.la1(conv2)
x = self.layer1(x)
tr1 = self.tr1([la1])
st2 = self.st2(tr1)
tr1_1 = self.conv_tr1_1(x)
tr1_2 = self.conv_tr1_2(x)
x = self.st2([tr1_1, tr1_2])
tr2 = self.tr2(st2)
st3 = self.st3(tr2)
tr2 = self.conv_tr2(x[-1])
x.append(tr2)
x = self.st3(x)
tr3 = self.tr3(st3)
st4 = self.st4(tr3)
tr3 = self.conv_tr3(x[-1])
x.append(tr3)
x = self.st4(x)
last_cls = self.last_cls(st4)
x = self.last_cls(x)
y = last_cls[0]
y = x[0]
for idx in range(3):
y = paddle.add(last_cls[idx + 1], self.cls_head_conv_list[idx](y))
y = paddle.add(x[idx + 1], self.cls_head_conv_list[idx](y))
y = self.conv_last(y)
y = self.pool2d_avg(y)
y = self.avg_pool(y)
y = paddle.reshape(y, shape=[-1, y.shape[1]])
y = self.out(y)
y = self.fc(y)
return y
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册