提交 8e162d37 编写于 作者: W weishengyu

update column

上级 c0147305
......@@ -9,37 +9,17 @@
**近期更新**
- 2021.10.31 发布[PP-ShiTu技术报告](./docs/PP_ShiTu.pdf),优化文档,新增饮料识别demo
- 2021.10.23 发布PP-ShiTu图像识别系统,新增轻量级检测、特征提取模型,速度提升800%,新增DeepHash模块,检索模块切换为faiss,支持PaddleServing和PaddleSlim
- 2021.09.17 增加PaddleClas自研PP-LCNet系列模型, 这些模型在Intel CPU上有较强的竞争力。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf)或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/ImageNet_models_cn.md)下载。
- 2021.08.11 更新7个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。
- 2021.06.22,23,24 PaddleClas官方研发团队带来技术深入解读三日直播课。课程回放:[https://aistudio.baidu.com/aistudio/course/introduce/24519](https://aistudio.baidu.com/aistudio/course/introduce/24519)
- 2021.06.16 PaddleClas v2.2版本升级,集成Metric learning,向量检索等组件。新增商品识别、动漫人物识别、车辆识别和logo识别等4个图像识别应用。新增LeViT、Twins、TNT、DLA、HarDNet、RedNet系列30个预训练模型。
- 2021.09.17 增加PaddleClas自研PP-LCNet系列模型, 这些模型在Intel CPU上有较强的竞争力。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf), 或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/ImageNet_models_cn.md)下载。
- [more](./docs/zh_CN/others/update_history.md)
<a name="图像识别系统介绍"></a>
## PP-ShiTu轻量级图像识别系统
<div align="center">
<img src="./docs/images/recognition.gif" width = "400" />
</div>
- 图像识别系统:集成了目标检测、特征学习、图像检索等模块,一套模型适用多个场景,下载即用。
- 轻量级检测、特征提取模型:CPU预测速度大幅提升,部分场景速度较上一版模型提升800%,精度打平。
<div align="center">
<img src="./docs/images/structure.jpg" width = "800" />
</div>
- 整个图像识别系统分为三步:
1. 通过一个目标检测模型,检测图像物体候选区域
2. 对每个候选区域进行特征提取
3. 与检索库中图像进行特征匹配,提取识别结果。
- 对于新的未知类别,无需重新训练模型,只需要在检索库补入该类别图像,重新建立检索库,就可以识别该类别。
## 特性
- 更详细的内容请参见我们的[技术报告](./docs/PP_ShiTu.pdf)
- PP-ShiTu轻量图像识别系统:集成了目标检测、特征学习、图像检索等模块,广泛适用于各类图像识别任务。
较上一版模型,CPU预测效率大幅提升,部分设备速度提升可达8倍。详情见[PP-ShiTu: A Practical Lightweight Image Recognition System](./docs/PP_ShiTu.pdf)
## PaddleClas特性
- PP-LCNet轻量级CPU骨干网络:专门为CPU设备打造轻量级骨干网络,速度、精度均超越竞品。
详情见[PP-LCNet: A Lightweight CPU Convolutional Neural Network](https://arxiv.org/pdf/2109.15099.pdf),
或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md)
- 丰富的预训练模型库:提供了35个系列共164个ImageNet预训练模型,其中6个精选系列模型支持结构快速修改。
......@@ -50,6 +30,12 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。
- 数据增广:支持AutoAugment、Cutout、Cutmix等8种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。
<div align="center">
<img src="./docs/images/recognition.gif" width = "400" />
</div>
## 欢迎加入技术交流群
* 您可以扫描下面的微信群二维码, 加入PaddleClas 微信交流群。获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。
......@@ -61,42 +47,65 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。
## 快速体验
图像识别快速体验:[点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md)
## 文档教程
- [快速安装](./docs/zh_CN/installation/install_paddleclas.md)
- [图像识别快速体验](./docs/zh_CN/quick_start/quick_start_recognition.md)
- [PP-ShiTu图像识别系统介绍](#图像识别系统介绍)
- [识别效果展示](#识别效果展示)
- 图像分类快速体验
- 安装说明
- [安装Paddle](./docs/zh_CN/installation/install_paddle.md)
- [安装PaddleClas](./docs/zh_CN/installation/install_paddleclas.md)
- 快速体验
- [图像识别快速体验](./docs/zh_CN/quick_start/quick_start_recognition.md)
- 图像分类快速体验
- [尝鲜版](./docs/zh_CN/quick_start/quick_start_classification_new_user.md)
- [进阶版](./docs/zh_CN/quick_start/quick_start_classification_professional.md)
- 算法介绍
- [骨干网络和预训练模型库](./docs/zh_CN/algorithm_introduction/ImageNet_models.md)
- [主体检测](./docs/zh_CN/image_recognition_pipeline/mainbody_detection.md)
- [图像分类](./docs/zh_CN/algorithm_introduction/image_classification.md)
- [PP-ShiTu图像识别系统介绍](#图像识别系统介绍)
- [主体检测](./docs/zh_CN/algorithm_introduction/mainbody_detection.md)
- [特征学习](./docs/zh_CN/algorithm_introduction/metric_learning.md)
- [向量检索](./deploy/vector_search/README.md)
- 模型训练/评估
- 数据准备
- [图像分类数据集介绍](./docs/zh_CN/data_preparation/classification_dataset.md)
- [图像识别数据集介绍](./docs/zh_CN/data_preparation/recognition_dataset.md)
- 模型训练
- [图像分类任务](./docs/zh_CN/models_training/classification.md)
- [特征学习任务](./docs/zh_CN/models_training/recognition.md)
- 模型预测
- [图像识别任务](./docs/zh_CN/models_training/recognition.md)
- [训练参数调整策略](./docs/zh_CN/models_training/train_strategy.md)
- [配置文件说明](./docs/zh_CN/models_training/config_description.md)
- 模型预测部署
- [模型导出](./docs/zh_CN/inference_deployment/export_model.md)
- Python/C++ 预测引擎
- [基于Python预测引擎预测推理](./docs/zh_CN/inference_deployment/python_deploy.md)
- [基于C++预测引擎预测推理](./deploy/cpp/readme.md)(当前只支持图像分类任务,图像识别更新中)
- 模型部署
- [基于C++预测引擎预测推理](./docs/zh_CN/inference_deployment/cpp_deploy.md)(当前只支持图像分类任务,图像识别更新中)
- 服务化部署
- [Paddle Serving服务化部署(推荐)](./docs/zh_CN/inference_deployment/paddle_serving_deploy.md)
- [Hub serving服务化部署](./docs/zh_CN/inference_deployment/paddle_hub_serving_deploy.md)
- [端侧部署](./deploy/lite/readme.md)
- [whl包预测](./docs/zh_CN/inference_deployment/whl_deploy.md)
- 算法介绍
- [图像分类任务介绍](./docs/zh_CN/algorithm_introduction/image_classification.md)
- [度量学习介绍](./docs/zh_CN/algorithm_introduction/metric_learning.md)
- [骨干网络和预训练模型库](./docs/zh_CN/algorithm_introduction/ImageNet_models.md)
- 高阶使用
- [知识蒸馏](./docs/zh_CN/advanced_tutorials/knowledge_distillation.md)
- [模型量化](./docs/zh_CN/advanced_tutorials/model_prune_quantization.md)
- [数据增广](./docs/zh_CN/advanced_tutorials/DataAugmentation.md)
- [模型量化](./docs/zh_CN/advanced_tutorials/model_prune_quantization.md)
- [知识蒸馏](./docs/zh_CN/advanced_tutorials/knowledge_distillation.md)
- [PaddleClas结构解析](./docs/zh_CN/advanced_tutorials/code_overview.md)
- [社区贡献指南](./docs/zh_CN/advanced_tutorials/how_to_contribute.md)
- FAQ
- [图像识别任务FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- [图像分类任务FAQ](docs/zh_CN/faq_series/faq.md)
- [图像识别精选问题](docs/zh_CN/faq_series/faq_2021_s2.md)
- [图像分类精选问题](docs/zh_CN/faq_series/faq.md)
- [图像分类FAQ第一季](docs/zh_CN/faq_series/faq_2020_s1.md)
- [图像分类FAQ第二季](docs/zh_CN/faq_series/faq_2021_s1.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)
<a name="图像识别系统介绍"></a>
## PP-ShiTu图像识别系统介绍
<div align="center">
<img src="./docs/images/structure.jpg" width = "800" />
</div>
整个图像识别系统分为三步:(1)通过一个目标检测模型,检测图像物体候选区域(2)对每个候选区域进行特征提取(3)与检索库中图像进行特征匹配,提取识别结果。
对于新的未知类别,无需重新训练模型,只需要在检索库补入该类别图像,重新建立检索库,就可以识别该类别。
<a name="识别效果展示"></a>
## 更多效果展示 [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images)
- 瓶装饮料识别
......@@ -137,10 +146,7 @@ Res2Net200_vd预训练模型Top-1精度高达85.1%。
我们非常欢迎你为PaddleClas贡献代码,也十分感谢你的反馈。
如果想为PaddleCLas贡献代码,可以参考[贡献指南](./docs/zh_CN/advanced_tutorials/how_to_contribute.md)
- 非常感谢[nblib](https://github.com/nblib)修正了PaddleClas中RandErasing的数据增广配置文件。
- 非常感谢[chenpy228](https://github.com/chenpy228)修正了PaddleClas文档中的部分错别字。
- 非常感谢[jm12138](https://github.com/jm12138)为PaddleClas添加ViT,DeiT系列模型和RepVGG系列模型。
- 非常感谢[FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563)对PaddleClas代码的解析与总结。
我们非常欢迎你为PaddleClas贡献代码,也十分感谢你的反馈。
# 更新日志
- 2021.08.11 更新7个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。
- 2021.06.22,23,24 PaddleClas官方研发团队带来技术深入解读三日直播课。课程回放:[https://aistudio.baidu.com/aistudio/course/introduce/24519](https://aistudio.baidu.com/aistudio/course/introduce/24519)
- 2021.06.16 PaddleClas v2.2版本升级,集成Metric learning,向量检索等组件。新增商品识别、动漫人物识别、车辆识别和logo识别等4个图像识别应用。新增LeViT、Twins、TNT、DLA、HarDNet、RedNet系列30个预训练模型。
- 2021.04.15
- 添加`MixNet_L``ReXNet_3_0`系列模型,在ImageNet-1k上`MixNet` 模型Top1 Acc可达78.6%,`ReXNet`模型可达82.09%
- 2021.01.27
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册