diff --git a/deploy/configs/cls_demo/person/inference_person_cls.yaml b/deploy/configs/PULC/person/inference_person_cls.yaml
similarity index 83%
rename from deploy/configs/cls_demo/person/inference_person_cls.yaml
rename to deploy/configs/PULC/person/inference_person_cls.yaml
index 9c5161c7c4cc81e77e8c562c9b22a8f7848cebd1..a70f663a792fcdcab3b7d45059f2afe0b1efbf07 100644
--- a/deploy/configs/cls_demo/person/inference_person_cls.yaml
+++ b/deploy/configs/PULC/person/inference_person_cls.yaml
@@ -1,9 +1,9 @@
Global:
- infer_imgs: "./images/cls_demo/person/objects365_02035329.jpg"
+ infer_imgs: "./images/PULC/person/objects365_02035329.jpg"
inference_model_dir: "./models/person_cls_infer"
batch_size: 1
use_gpu: True
- enable_mkldnn: True
+ enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
@@ -30,7 +30,7 @@ PostProcess:
main_indicator: ThreshOutput
ThreshOutput:
threshold: 0.9
- label_0: invalid
- label_1: valid
+ label_0: nobody
+ label_1: someone
SavePreLabel:
save_dir: ./pre_label/
diff --git a/deploy/images/cls_demo/person/objects365_01780782.jpg b/deploy/images/PULC/person/objects365_01780782.jpg
similarity index 100%
rename from deploy/images/cls_demo/person/objects365_01780782.jpg
rename to deploy/images/PULC/person/objects365_01780782.jpg
diff --git a/deploy/images/cls_demo/person/objects365_02035329.jpg b/deploy/images/PULC/person/objects365_02035329.jpg
similarity index 100%
rename from deploy/images/cls_demo/person/objects365_02035329.jpg
rename to deploy/images/PULC/person/objects365_02035329.jpg
diff --git a/docs/zh_CN/cls_demo/quick_start_cls_demo.md b/docs/zh_CN/PULC/PULC_person_cls.md
similarity index 56%
rename from docs/zh_CN/cls_demo/quick_start_cls_demo.md
rename to docs/zh_CN/PULC/PULC_person_cls.md
index dc1f8cd34be2ce9808380e75b1f8652d73cb11a6..ab9feb4811a5861b1f39a9845962265d1d816f1e 100644
--- a/docs/zh_CN/cls_demo/quick_start_cls_demo.md
+++ b/docs/zh_CN/PULC/PULC_person_cls.md
@@ -1,6 +1,6 @@
# PaddleClas构建有人/无人分类案例
-此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、KL-JS-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
+此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、SKL-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
------
@@ -55,7 +55,7 @@ cd deploy
mkdir models
cd models
# 下载inference 模型并解压
-wget https://paddleclas.bj.bcebos.com/models/cls_demo/person_cls_infer.tar && tar -xf person_cls_infer.tar
+wget https://paddleclas.bj.bcebos.com/models/PULC/person_cls_infer.tar && tar -xf person_cls_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
@@ -75,23 +75,29 @@ wget https://paddleclas.bj.bcebos.com/models/cls_demo/person_cls_infer.tar && ta
#### 2.2.1 预测单张图像
-运行下面的命令,对图像 `./images/cls_demo/person/objects365_02035329.jpg` 进行有人/无人分类。
+返回 `deploy` 目录:
+
+```
+cd ../
+```
+
+运行下面的命令,对图像 `./images/PULC/person/objects365_02035329.jpg` 进行有人/无人分类。
```shell
# 使用下面的命令使用 GPU 进行预测
-python3.7 python/predict_cls.py -c configs/cls_demo/person/inference_person_cls.yaml
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794
# 使用下面的命令使用 CPU 进行预测
-python3.7 python/predict_system.py -c configs/inference_general.yaml -o Global.use_gpu=False
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
```
输出结果如下。
```
-objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name(s): ['someone', 'nobody']
+objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
```
-其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
+**备注:** 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的`val`数据集在千分之一Fpr下得到的最佳Tpr所得到的阈值为`0.9794`,故此处的`threshold`为`0.9794`。该阈值的确定方法可以参考[3.2节](#3.2)
@@ -101,16 +107,18 @@ objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
-python3.7 python/predict_system.py -c configs/inference_general.yaml -o Global.infer_imgs="./images/cls_demo/person/"
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.infer_imgs="./images/PULC/person/"
```
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
-objects365_01780782.jpg: class id(s): [0, 1], score(s): [1.00, 0.00], label_name(s): ['nobody', 'someone']
-objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name(s): ['someone', 'nobody']
+objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
+objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
```
+其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
+
## 3.有人/无人场景训练
@@ -161,7 +169,7 @@ cd ../
* **注意**:
-* 本案例中所使用的所有数据集均为开源数据,`train`集合为[MS-COCO数据](https://cocodataset.org/#overview)的训练集的子集,`val`集合为[Object365数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`为[ImageNet数据](https://www.image-net.org/)的验证集。
+* 本案例中所使用的所有数据集均为开源数据,`train`集合为[MS-COCO数据](https://cocodataset.org/#overview)的训练集的子集,`val`集合为[Object365数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`为[ImageNet数据](https://www.image-net.org/)的验证集。数据集的筛选流程可以参考[有人/无人场景数据集筛选方法]()。
@@ -175,47 +183,53 @@ cd ../
##### 3.2.1.1 基于默认超参数训练轻量级模型
-在`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml`中提供了基于该场景中已经搜索好的超参数,可以通过如下脚本启动训练:
+在`ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml`中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
- -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
```
-验证集的最佳 metric 在0.94-0.95之间(数据集较小,容易造成波动)。
+验证集的最佳指标在0.94-0.95之间(数据集较小,容易造成波动)。
+
+**备注:**
+
+* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr为千分之一。关于Fpr和Tpr的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)。
+
+* 在eval时,会打印出来当前最佳的TprAtFpr指标,具体地,其会打印当前的`Fpr`、`Tpr`值,以及当前的`threshold`值,`Tpr`值反映了在当前`Fpr`值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳`Fpr`所对应的分类阈值,可用于后续模型部署落地等。
##### 3.2.1.2 基于默认超参数训练教师模型
-复用`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml`中的超参数,训练教师模型,训练脚本如下:
+复用`ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml`中的超参数,训练教师模型,训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
- -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
```
-验证集的最佳 metric 为0.97-0.98之间,当前教师模型最好的权重保存在`output/ResNet101_vd/best_model.pdparams`。
+验证集的最佳指标为0.96-0.98之间,当前教师模型最好的权重保存在`output/ResNet101_vd/best_model.pdparams`。
##### 3.2.1.3 基于默认超参数进行蒸馏训练
-配置文件`ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml`提供了`KL-JS-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
+配置文件`ppcls/configs/PULC/PULC/Distillation/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
- -c .ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml \
+ -c ./ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```
@@ -228,14 +242,19 @@ python3 -m paddle.distributed.launch \
* 搜索运行脚本如下:
```shell
-python tools/search_strategy.py -c ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
+python tools/search_strategy.py -c ppcls/configs/StrategySearch/person.yaml
```
+在`ppcls/configs/StrategySearch/person.yaml`中指定了具体的 GPU id 号和搜索配置。
+
* **注意**:
-* 此过程基于当前数据集在 V100 4 卡上大概需要耗时 6 小时,如果缺少机器资源,希望体验搜索过程,可以将`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml`中的`train_list.txt`和`val_list.txt`分别替换为`train_list.txt.debug`和`val_list.txt.debug`。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。
+* 3.1小节提供的默认配置已经经过了搜索,所以此过程不是必要的过程,如果自己的训练数据集有变化,可以尝试此过程。
+
+* 此过程基于当前数据集在 V100 4 卡上大概需要耗时 10 小时,如果缺少机器资源,希望体验搜索过程,可以将`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml`中的`train_list.txt`和`val_list.txt`分别替换为`train_list.txt.debug`和`val_list.txt.debug`。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。另外,搜索空间可以根据当前的机器资源来调整,如果机器资源有限,可以尝试缩小搜索空间,如果机器资源较充足,可以尝试扩大搜索空间。
+
+* 如果此过程搜索的得到的超参数与[3.2.1小节](#3.2.1)提供的超参数不一致,主要是由于训练数据较小造成的波动导致,可以忽略。
-* 如果此过程搜索的得到的超参数与3.2.1小节提供的超参数不一致,主要是由于训练数据较小造成的波动导致,可以忽略。
@@ -246,11 +265,11 @@ python tools/search_strategy.py -c ppcls/configs/cls_demo/person/PPLCNet/PPLCNet
### 4.1 模型评估
-训练好模型之后,可以通过以下命令实现对模型精度的评估。
+训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
- -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```
@@ -262,11 +281,20 @@ python3 tools/eval.py \
```python
python3 tools/infer.py \
- -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
-o Infer.infer_imgs=./dataset/person/val/objects365_01780637.jpg \
- -o Global.pretrained_model=output/PPLCNet_x1_0/best_model
+ -o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
+ -o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
+```
+
+输出结果如下:
+
+```
+[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person/val/objects365_01780637.jpg'}]
```
+**备注:** 这里的`Infer.PostProcess.threshold`的值需要根据实际场景来确定,此处的`0.9794`是在该场景中的`val`数据集在千分之一Fpr下得到的最佳Tpr所得到的。
+
### 4.3 使用 inference 模型进行推理
@@ -280,7 +308,7 @@ python3 tools/infer.py \
```bash
python3 tools/export_model.py \
- -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -c ./ppcls/configs/cls_demo/PULC/PPLCNet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person
```
@@ -292,8 +320,11 @@ python3 tools/export_model.py \
推理预测的脚本为:
```
-python3.7 python/predict_cls.py -c configs/cls_demo/person/inference_person_cls.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person"
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person" -o PostProcess.ThreshOutput.threshold=0.9794
```
-更多关于推理的细节,可以参考[2.2节](#2.2)。
+**备注:**
+
+- 此处的`PostProcess.ThreshOutput.threshold`由eval时的最佳`threshold`来确定。
+- 更多关于推理的细节,可以参考[2.2节](#2.2)。
diff --git a/ppcls/arch/__init__.py b/ppcls/arch/__init__.py
index 3f94501fbde0f958d662359889cef074442cf5aa..d3f98885b5e0cd3b4d4db4483f30edf674432f72 100644
--- a/ppcls/arch/__init__.py
+++ b/ppcls/arch/__init__.py
@@ -40,6 +40,7 @@ def build_model(config):
arch = getattr(mod, model_type)(**arch_config)
if use_sync_bn:
arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
+
if isinstance(arch, TheseusLayer):
prune_model(config, arch)
quantize_model(config, arch)
diff --git a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml b/ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
similarity index 94%
rename from ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
rename to ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
index a9c3db29682933f19cf93ef000d5b6ec83007aa7..afb9b43a0dfad4153bdc761a13c61a4d0e5fd47d 100644
--- a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
+++ b/ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
@@ -6,7 +6,7 @@ Global:
device: gpu
save_interval: 1
eval_during_train: True
- start_eval_epoch: 10
+ start_eval_epoch: 1
eval_interval: 1
epochs: 20
print_batch_step: 10
@@ -33,14 +33,11 @@ Arch:
- Teacher:
name: ResNet101_vd
class_num: *class_num
- use_sync_bn: True
- Student:
name: PPLCNet_x1_0
class_num: *class_num
pretrained: True
use_ssld: True
- use_sync_bn: True
- lr_mult_list: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
infer_model_name: "Student"
@@ -155,9 +152,10 @@ Infer:
order: ''
- ToCHWImage:
PostProcess:
- name: Topk
- topk: 5
- class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
Metric:
Train:
diff --git a/ppcls/configs/cls_demo/person/OtherModels/MobileNetV3_large_x1_0.yaml b/ppcls/configs/PULC/person/OtherModels/MobileNetV3_large_x1_0.yaml
similarity index 97%
rename from ppcls/configs/cls_demo/person/OtherModels/MobileNetV3_large_x1_0.yaml
rename to ppcls/configs/PULC/person/OtherModels/MobileNetV3_large_x1_0.yaml
index d16a1b61761105ba60153355cef3eae75813ac0f..d69bb933fdbf5592d497651cad79995a492cdf28 100644
--- a/ppcls/configs/cls_demo/person/OtherModels/MobileNetV3_large_x1_0.yaml
+++ b/ppcls/configs/PULC/person/OtherModels/MobileNetV3_large_x1_0.yaml
@@ -130,9 +130,10 @@ Infer:
order: ''
- ToCHWImage:
PostProcess:
- name: Topk
- topk: 5
- class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
Metric:
Train:
diff --git a/ppcls/configs/cls_demo/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml b/ppcls/configs/PULC/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
similarity index 97%
rename from ppcls/configs/cls_demo/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
rename to ppcls/configs/PULC/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
index 9999f02830a4a3842326cfe5160c560d6179f937..0e2248e98529b511c7821b49ced6cf0625016553 100644
--- a/ppcls/configs/cls_demo/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
+++ b/ppcls/configs/PULC/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
@@ -153,9 +153,10 @@ Infer:
order: ''
- ToCHWImage:
PostProcess:
- name: Topk
- topk: 5
- class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
Metric:
Train:
diff --git a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
similarity index 95%
rename from ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
rename to ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
index 97ae1ba73b0c499a5e2b80f5d32c62964b061a40..e196547923a345a9535f5b63a568817b2784c6d7 100644
--- a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
+++ b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
@@ -26,7 +26,6 @@ Arch:
pretrained: True
use_ssld: True
use_sync_bn: True
- lr_mult_list: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
# loss function config for traing/eval process
Loss:
@@ -137,9 +136,10 @@ Infer:
order: ''
- ToCHWImage:
PostProcess:
- name: Topk
- topk: 5
- class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
Metric:
Train:
diff --git a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
similarity index 97%
rename from ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
rename to ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
index 3c9bfb5dbb10fdea9c1209ecaace08c2fb59ac6a..b2126b69f9d773d918df6b1f03361cac06ee44f8 100644
--- a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
+++ b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
@@ -136,9 +136,10 @@ Infer:
order: ''
- ToCHWImage:
PostProcess:
- name: Topk
- topk: 5
- class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
Metric:
Train:
diff --git a/ppcls/configs/StrategySearch/person.yaml b/ppcls/configs/StrategySearch/person.yaml
index d9841c9af7e7f78ce62eaa5a1811be4d337d475b..906635595f33417cf564ca54a430c3c648fd738d 100644
--- a/ppcls/configs/StrategySearch/person.yaml
+++ b/ppcls/configs/StrategySearch/person.yaml
@@ -1,9 +1,9 @@
-base_config_file: ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
-distill_config_file: ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
+base_config_file: ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
+distill_config_file: ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
gpus: 0,1,2,3
output_dir: output/search_person
-search_times: 3
+search_times: 1
search_dict:
- search_key: lrs
replace_config:
diff --git a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation_search.yaml b/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation_search.yaml
deleted file mode 100644
index 231766d846459e5157a48fcde110b391f7f5cd5a..0000000000000000000000000000000000000000
--- a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation_search.yaml
+++ /dev/null
@@ -1,169 +0,0 @@
-# global configs
-Global:
- checkpoints: null
- pretrained_model: null
- output_dir: ./output
- device: gpu
- save_interval: 1
- eval_during_train: True
- start_eval_epoch: 10
- eval_interval: 1
- epochs: 20
- print_batch_step: 10
- use_visualdl: False
- # used for static mode and model export
- image_shape: [3, 224, 224]
- save_inference_dir: ./inference
- # training model under @to_static
- to_static: False
- use_dali: False
-
-# model architecture
-Arch:
- name: "DistillationModel"
- class_num: &class_num 2
- # if not null, its lengths should be same as models
- pretrained_list:
- # if not null, its lengths should be same as models
- freeze_params_list:
- - True
- - False
- use_sync_bn: True
- models:
- - Teacher:
- name: ResNet101_vd
- class_num: *class_num
- use_sync_bn: True
- - Student:
- name: PPLCNet_x1_0
- class_num: *class_num
- pretrained: True
- use_ssld: True
- use_sync_bn: True
-
- infer_model_name: "Student"
-
-# loss function config for traing/eval process
-Loss:
- Train:
- - DistillationDMLLoss:
- weight: 1.0
- model_name_pairs:
- - ["Student", "Teacher"]
- Eval:
- - CELoss:
- weight: 1.0
-
-
-Optimizer:
- name: Momentum
- momentum: 0.9
- lr:
- name: Cosine
- learning_rate: 0.01
- warmup_epoch: 5
- regularizer:
- name: 'L2'
- coeff: 0.00004
-
-
-# data loader for train and eval
-DataLoader:
- Train:
- dataset:
- name: ImageNetDataset
- image_root: ./dataset/person/
- cls_label_path: ./dataset/person/train_list_for_distill.txt
- transform_ops:
- - DecodeImage:
- to_rgb: True
- channel_first: False
- - RandCropImage:
- size: 224
- - RandFlipImage:
- flip_code: 1
- - TimmAutoAugment:
- prob: 0.0
- config_str: rand-m9-mstd0.5-inc1
- interpolation: bicubic
- img_size: 224
- - NormalizeImage:
- scale: 1.0/255.0
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- order: ''
- - RandomErasing:
- EPSILON: 0.0
- sl: 0.02
- sh: 1.0/3.0
- r1: 0.3
- attempt: 10
- use_log_aspect: True
- mode: pixel
- sampler:
- name: DistributedBatchSampler
- batch_size: 64
- drop_last: False
- shuffle: True
- loader:
- num_workers: 16
- use_shared_memory: True
-
- Eval:
- dataset:
- name: ImageNetDataset
- image_root: ./dataset/person/
- cls_label_path: ./dataset/person/val_list.txt
- transform_ops:
- - DecodeImage:
- to_rgb: True
- channel_first: False
- - ResizeImage:
- resize_short: 256
- - CropImage:
- size: 224
- - NormalizeImage:
- scale: 1.0/255.0
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- order: ''
- sampler:
- name: DistributedBatchSampler
- batch_size: 64
- drop_last: False
- shuffle: False
- loader:
- num_workers: 4
- use_shared_memory: True
-
-Infer:
- infer_imgs: docs/images/inference_deployment/whl_demo.jpg
- batch_size: 10
- transforms:
- - DecodeImage:
- to_rgb: True
- channel_first: False
- - ResizeImage:
- resize_short: 256
- - CropImage:
- size: 224
- - NormalizeImage:
- scale: 1.0/255.0
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- order: ''
- - ToCHWImage:
- PostProcess:
- name: Topk
- topk: 5
- class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
-
-Metric:
- Train:
- - DistillationTopkAcc:
- model_key: "Student"
- topk: [1, 2]
- Eval:
- - TprAtFpr:
- - TopkAcc:
- topk: [1, 2]
diff --git a/ppcls/data/postprocess/__init__.py b/ppcls/data/postprocess/__init__.py
index 831a4da0008ba70824203be3a6f46c9700225457..54678dc443ebab5bf55d54d9284d328bbc4523b3 100644
--- a/ppcls/data/postprocess/__init__.py
+++ b/ppcls/data/postprocess/__init__.py
@@ -14,9 +14,10 @@
import copy
import importlib
-from . import topk
+from . import topk, threshoutput
from .topk import Topk, MultiLabelTopk
+from .threshoutput import ThreshOutput
def build_postprocess(config):
diff --git a/ppcls/data/postprocess/threshoutput.py b/ppcls/data/postprocess/threshoutput.py
new file mode 100644
index 0000000000000000000000000000000000000000..607aecbfdeae018a5334f723effd658fb480713a
--- /dev/null
+++ b/ppcls/data/postprocess/threshoutput.py
@@ -0,0 +1,36 @@
+# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle.nn.functional as F
+
+
+class ThreshOutput(object):
+ def __init__(self, threshold, label_0="0", label_1="1"):
+ self.threshold = threshold
+ self.label_0 = label_0
+ self.label_1 = label_1
+
+ def __call__(self, x, file_names=None):
+ y = []
+ x = F.softmax(x, axis=-1).numpy()
+ for idx, probs in enumerate(x):
+ score = probs[1]
+ if score < self.threshold:
+ result = {"class_ids": [0], "scores": [1 - score], "label_names": [self.label_0]}
+ else:
+ result = {"class_ids": [1], "scores": [score], "label_names": [self.label_1]}
+ if file_names is not None:
+ result["file_name"] = file_names[idx]
+ y.append(result)
+ return y
diff --git a/tools/search_strategy.py b/tools/search_strategy.py
index b4325d65ae23f2b1c420b9dfd44c7a79e5f52bbf..15f4aa71be67bbd0f5ec92d240bbc53896684d91 100644
--- a/tools/search_strategy.py
+++ b/tools/search_strategy.py
@@ -91,7 +91,7 @@ def search_strategy():
res = search_train(teacher_list, teacher_program, base_output_dir, "teacher", replace_config, model_name)
all_results["teacher"] = res
best = res.get("best")
- t_pretrained = "{}/{}_{}/{}/best_model".format(base_output_dir, "teacher", best, best)
+ t_pretrained = "{}/{}_{}_0/{}/best_model".format(base_output_dir, "teacher", best, best)
base_program += ["-o", "Arch.models.0.Teacher.name={}".format(best),
"-o", "Arch.models.0.Teacher.pretrained={}".format(t_pretrained)]
output_dir = "{}/search_res".format(base_output_dir)