diff --git a/docs/zh_CN/models/ImageNet1k/DPN.md b/docs/zh_CN/models/ImageNet1k/DPN.md
index 7dabf408f60693a282a378dd5d4ebdf1dc9292da..27fe3bf07d56a5ab0e1d15246bd8911b434bffbc 100644
--- a/docs/zh_CN/models/ImageNet1k/DPN.md
+++ b/docs/zh_CN/models/ImageNet1k/DPN.md
@@ -85,11 +85,11 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
**备注:** 推理过程使用 TensorRT。
-
+
## 2. 模型快速体验
-安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
+安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。
@@ -107,19 +107,19 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
-Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。
+Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。
### 4.2 基于 Python 预测引擎推理
-PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
+PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
### 4.3 基于 C++ 预测引擎推理
-PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
@@ -127,7 +127,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
-PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
@@ -135,7 +135,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
-PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
@@ -143,4 +143,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
diff --git a/docs/zh_CN/models/ImageNet1k/DenseNet.md b/docs/zh_CN/models/ImageNet1k/DenseNet.md
index a2572ceffde8d2a6b6e4422a109b4c8c7ec125fd..83615e1ccaa2f643057883a9807c8a5d87b2bdc4 100644
--- a/docs/zh_CN/models/ImageNet1k/DenseNet.md
+++ b/docs/zh_CN/models/ImageNet1k/DenseNet.md
@@ -96,17 +96,17 @@ DenseNet 是 2017 年 CVPR best paper 提出的一种新的网络结构,该网
**备注:** 推理过程使用 TensorRT。
-
+
## 2. 模型快速体验
-安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
+安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/DPN/`、`ppcls/configs/ImageNet/DenseNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/DenseNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
@@ -118,19 +118,19 @@ DenseNet 是 2017 年 CVPR best paper 提出的一种新的网络结构,该网
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
-Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。
+Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。
### 4.2 基于 Python 预测引擎推理
-PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
+PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
### 4.3 基于 C++ 预测引擎推理
-PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
@@ -138,7 +138,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
-PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
@@ -146,7 +146,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
-PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
@@ -154,4 +154,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
diff --git a/docs/zh_CN/models/ImageNet1k/EfficientNet.md b/docs/zh_CN/models/ImageNet1k/EfficientNet.md
index 5f7a9af7cb7c60b47ffe37546996809dd734cba5..36b3d1dc7ad72ff121cf9b699c0f0aac71e8814b 100644
--- a/docs/zh_CN/models/ImageNet1k/EfficientNet.md
+++ b/docs/zh_CN/models/ImageNet1k/EfficientNet.md
@@ -97,11 +97,11 @@ EfficientNet 是 Google 于 2019 年发布的一个基于 NAS 的轻量级网络
**备注:** 推理过程使用 TensorRT。
-
+
## 2. 模型快速体验
-安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
+安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。
@@ -119,19 +119,19 @@ EfficientNet 是 Google 于 2019 年发布的一个基于 NAS 的轻量级网络
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
-Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。
+Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。
### 4.2 基于 Python 预测引擎推理
-PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
+PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
### 4.3 基于 C++ 预测引擎推理
-PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
@@ -139,7 +139,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
-PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
@@ -147,7 +147,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
-PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
@@ -155,4 +155,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
diff --git a/docs/zh_CN/models/ImageNet1k/GhostNet.md b/docs/zh_CN/models/ImageNet1k/GhostNet.md
index c5f7cfeeb4ba8a3cfe53e2ea49832f921635ee18..064df18fff9d8819b990d6181f7b8224aec837d2 100644
--- a/docs/zh_CN/models/ImageNet1k/GhostNet.md
+++ b/docs/zh_CN/models/ImageNet1k/GhostNet.md
@@ -87,7 +87,7 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileNetV1/`、、、、、 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/GhostNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
diff --git a/docs/zh_CN/models/ImageNet1k/Others.md b/docs/zh_CN/models/ImageNet1k/Others.md
index 639ec605e3e59700ca51d9d60ac84a035bb97503..3873753a1b6c0ca5d3aadc8df471b6d86b6f76cf 100644
--- a/docs/zh_CN/models/ImageNet1k/Others.md
+++ b/docs/zh_CN/models/ImageNet1k/Others.md
@@ -87,7 +87,7 @@ SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/、、、/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/xxx/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
diff --git a/docs/zh_CN/models/ImageNet1k/RedNet.md b/docs/zh_CN/models/ImageNet1k/RedNet.md
index 1046c8feb51f422148149463a33dddf61fa13985..3052c09592fd6b7a4c0a9a9f071c72757cc39ed7 100644
--- a/docs/zh_CN/models/ImageNet1k/RedNet.md
+++ b/docs/zh_CN/models/ImageNet1k/RedNet.md
@@ -116,8 +116,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-<<<<<<< 60cba5adfae34265593069e36ff0d379b8aeba71:docs/zh_CN/models/ImageNet1k/RedNet.md
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
-=======
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
->>>>>>> docs: update:docs/zh_CN/models/RedNet.md
diff --git a/docs/zh_CN/models/ImageNet1k/Res2Net.md b/docs/zh_CN/models/ImageNet1k/Res2Net.md
index a40d07c2ee312b5dada207ec1210a3f61bd59bee..8d20ceedb76f7dc1ba673a773764a53b2104e8c5 100644
--- a/docs/zh_CN/models/ImageNet1k/Res2Net.md
+++ b/docs/zh_CN/models/ImageNet1k/Res2Net.md
@@ -99,7 +99,7 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SEResNeXt/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/Res2Net/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
diff --git a/docs/zh_CN/models/ImageNet1k/ResNeXt.md b/docs/zh_CN/models/ImageNet1k/ResNeXt.md
index 640b7a05a6be8b5285ece3ba11931d4d60079e0f..384b3e91b8e058d6e0c3c62256d0e1813c1a738c 100644
--- a/docs/zh_CN/models/ImageNet1k/ResNeXt.md
+++ b/docs/zh_CN/models/ImageNet1k/ResNeXt.md
@@ -29,8 +29,6 @@
ResNeXt 是 ResNet 的典型变种网络之一,ResNeXt 发表于 2017 年的 CVPR 会议。在此之前,提升模型精度的方法主要集中在将网络变深或者变宽,这样增加了参数量和计算量,推理速度也会相应变慢。ResNeXt 结构提出了通道分组(cardinality)的概念,作者通过实验发现增加通道的组数比增加深度和宽度更有效。其可以在不增加参数复杂度的前提下提高准确率,同时还减少了参数的数量,所以是比较成功的 ResNet 的变种。
-SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全新的 SE 结构,该结构可以迁移到任何其他网络中,其通过控制 scale 的大小,把每个通道间重要的特征增强,不重要的特征减弱,从而让提取的特征指向性更强。
-
该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png)
@@ -61,9 +59,6 @@ SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全
| ResNeXt152_vd_32x4d | 0.807 | 0.952 | | | 22.490 | 56.300 |
| ResNeXt152_64x4d | 0.795 | 0.947 | | | 43.030 | 107.570 |
| ResNeXt152_vd_64x4d | 0.811 | 0.953 | | | 43.520 | 107.590 |
-| SE_ResNeXt50_32x4d | 0.784 | 0.940 | 0.789 | 0.945 | 8.020 | 26.160 |
-| SE_ResNeXt50_vd_32x4d | 0.802 | 0.949 | | | 10.760 | 26.280 |
-| SE_ResNeXt101_32x4d | 0.7939 | 0.9443 | 0.793 | 0.950 | 15.020 | 46.280 |
### 1.3 Benchmark
@@ -85,9 +80,6 @@ SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全
| ResNeXt152_vd_32x4d | 224 | 16.99 | 25.29 | 33.85 |
| ResNeXt152_64x4d | 224 | 33.07 | 42.05 | 59.13 |
| ResNeXt152_vd_64x4d | 224 | 33.30 | 42.41 | 59.42 |
-| SE_ResNeXt50_32x4d | 224 | 6.39 | 11.01 | 14.94 |
-| SE_ResNeXt50_vd_32x4d | 224 | 7.04 | 11.57 | 16.01 |
-| SE_ResNeXt101_32x4d | 224 | 13.31 | 21.85 | 28.77 |
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
@@ -109,23 +101,20 @@ SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全
| ResNeXt152_vd_32x4d | 224 | 25.11196 | 26.70515 | 31.72636 | 25.03258 | 30.08987 | 52.64429 |
| ResNeXt152_64x4d | 224 | 46.58293 | 48.34563 | 56.97961 | 46.7564 | 56.34108 | 106.11736 |
| ResNeXt152_vd_64x4d | 224 | 47.68447 | 48.91406 | 57.29329 | 47.18638 | 57.16257 | 107.26288 |
-| SE_ResNeXt50_32x4d | 224 | 9.06957 | 11.37898 | 18.86282 | 8.74121 | 13.563 | 23.01954 |
-| SE_ResNeXt50_vd_32x4d | 224 | 9.25016 | 11.85045 | 25.57004 | 9.17134 | 14.76192 | 19.914 |
-| SE_ResNeXt101_32x4d | 224 | 19.34455 | 20.6104 | 32.20432 | 18.82604 | 25.31814 | 41.97758 |
**备注:** 推理过程使用 TensorRT。
-
+
## 2. 模型快速体验
-安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
+安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SEResNeXt/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/ResNeXt/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
@@ -137,19 +126,19 @@ SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
-Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。
+Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。
### 4.2 基于 Python 预测引擎推理
-PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
+PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
### 4.3 基于 C++ 预测引擎推理
-PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
@@ -157,7 +146,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
-PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
@@ -165,7 +154,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
-PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
@@ -173,4 +162,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
diff --git a/docs/zh_CN/models/ImageNet1k/ResNeXt101_wsl.md b/docs/zh_CN/models/ImageNet1k/ResNeXt101_wsl.md
index 040d09f7956c43916abd51b45e532da0c126ceca..82f8eaef9259d8972f7f9e0d219b59d3cc6a11c4 100644
--- a/docs/zh_CN/models/ImageNet1k/ResNeXt101_wsl.md
+++ b/docs/zh_CN/models/ImageNet1k/ResNeXt101_wsl.md
@@ -83,11 +83,11 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
**备注:** 推理过程使用 TensorRT。
-
+
## 2. 模型快速体验
-安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
+安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。
@@ -105,19 +105,19 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
-Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。
+Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。
### 4.2 基于 Python 预测引擎推理
-PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
+PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
### 4.3 基于 C++ 预测引擎推理
-PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
@@ -125,7 +125,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
-PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
@@ -133,7 +133,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
-PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
@@ -141,4 +141,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
diff --git a/docs/zh_CN/models/ImageNet1k/SENet.md b/docs/zh_CN/models/ImageNet1k/SENet.md
new file mode 100644
index 0000000000000000000000000000000000000000..39d2a5143bbb5caba35f75a456787822f920d68a
--- /dev/null
+++ b/docs/zh_CN/models/ImageNet1k/SENet.md
@@ -0,0 +1,137 @@
+# ResNeXt 系列
+-----
+
+## 目录
+
+- [1. 模型介绍](#1)
+ - [1.1 模型简介](#1.1)
+ - [1.2 模型指标](#1.2)
+ - [1.3 Benchmark](#1.3)
+ - [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
+ - [1.3.2 基于 T4 GPU 的预测速度](#1.3.2)
+- [2. 模型快速体验](#2)
+- [3. 模型训练、评估和预测](#3)
+- [4. 模型推理部署](#4)
+ - [4.1 推理模型准备](#4.1)
+ - [4.2 基于 Python 预测引擎推理](#4.2)
+ - [4.3 基于 C++ 预测引擎推理](#4.3)
+ - [4.4 服务化部署](#4.4)
+ - [4.5 端侧部署](#4.5)
+ - [4.6 Paddle2ONNX 模型转换与预测](#4.6)
+
+
+
+## 1. 模型介绍
+
+
+
+### 1.1 模型简介
+
+SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全新的 SE 结构,该结构可以迁移到任何其他网络中,其通过控制 scale 的大小,把每个通道间重要的特征增强,不重要的特征减弱,从而让提取的特征指向性更强。
+
+该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。
+
+![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png)
+
+![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png)
+
+![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png)
+
+![](../../images/models/T4_benchmark/t4.fp16.bs4.SeResNeXt.png)
+
+
+
+
+### 1.2 模型指标
+
+| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) |
+|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
+| SE_ResNeXt50_32x4d | 0.784 | 0.940 | 0.789 | 0.945 | 8.020 | 26.160 |
+| SE_ResNeXt50_vd_32x4d | 0.802 | 0.949 | | | 10.760 | 26.280 |
+| SE_ResNeXt101_32x4d | 0.7939 | 0.9443 | 0.793 | 0.950 | 15.020 | 46.280 |
+
+### 1.3 Benchmark
+
+
+
+#### 1.3.1 基于 V100 GPU 的预测速度
+
+| Models | Size | Latency(ms)
bs=1 | Latency(ms)
bs=4 | Latency(ms)
bs=8 |
+|-----------------------|-------------------|-----------------------|-----------------------|-----------------------|
+| SE_ResNeXt50_32x4d | 224 | 6.39 | 11.01 | 14.94 |
+| SE_ResNeXt50_vd_32x4d | 224 | 7.04 | 11.57 | 16.01 |
+| SE_ResNeXt101_32x4d | 224 | 13.31 | 21.85 | 28.77 |
+
+**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
+
+
+
+#### 1.3.2 基于 T4 GPU 的预测速度
+
+| Models | Size | Latency(ms)
FP16
bs=1 | Latency(ms)
FP16
bs=4 | Latency(ms)
FP16
bs=8 | Latency(ms)
FP32
bs=1 | Latency(ms)
FP32
bs=4 | Latency(ms)
FP32
bs=8 |
+|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
+| SE_ResNeXt50_32x4d | 224 | 9.06957 | 11.37898 | 18.86282 | 8.74121 | 13.563 | 23.01954 |
+| SE_ResNeXt50_vd_32x4d | 224 | 9.25016 | 11.85045 | 25.57004 | 9.17134 | 14.76192 | 19.914 |
+| SE_ResNeXt101_32x4d | 224 | 19.34455 | 20.6104 | 32.20432 | 18.82604 | 25.31814 | 41.97758 |
+
+**备注:** 推理过程使用 TensorRT。
+
+
+
+## 2. 模型快速体验
+
+安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。
+
+
+
+## 3. 模型训练、评估和预测
+
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SENet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+
+
+
+## 4. 模型推理部署
+
+
+
+### 4.1 推理模型准备
+
+Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
+
+Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。
+
+
+
+### 4.2 基于 Python 预测引擎推理
+
+PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
+
+
+
+### 4.3 基于 C++ 预测引擎推理
+
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
+
+
+
+### 4.4 服务化部署
+
+Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
+
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
+
+
+
+### 4.5 端侧部署
+
+Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
+
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
+
+
+
+### 4.6 Paddle2ONNX 模型转换与预测
+
+Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
+
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
diff --git a/docs/zh_CN/models/ImageNet1k/SwinTransformer.md b/docs/zh_CN/models/ImageNet1k/SwinTransformer.md
index 1faedb295ca98965613b0421b9afeb98da151ac9..ff26f7539a561125a249c61afdc356273c0b45ac 100644
--- a/docs/zh_CN/models/ImageNet1k/SwinTransformer.md
+++ b/docs/zh_CN/models/ImageNet1k/SwinTransformer.md
@@ -27,7 +27,7 @@
### 1.1 模型简介
-Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。SwinTransformer 由移动窗口(shifted windows)表示的层次 Transformer 结构组成。移动窗口将自注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了网络性能。[论文地址](https://arxiv.org/abs/2103.14030)。
+SwinTransformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。SwinTransformer 由移动窗口(shifted windows)表示的层次 Transformer 结构组成。移动窗口将自注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了网络性能。[论文地址](https://arxiv.org/abs/2103.14030)。
@@ -133,8 +133,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
-<<<<<<< 60cba5adfae34265593069e36ff0d379b8aeba71:docs/zh_CN/models/ImageNet1k/SwinTransformer.md
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
-=======
-PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
->>>>>>> docs: update:docs/zh_CN/models/SwinTransformer.md
diff --git a/docs/zh_CN/models/ImageNet1k/Twins.md b/docs/zh_CN/models/ImageNet1k/Twins.md
index ea8d7f834deaac74d8ab677babef1240ee91dbca..efa581bb61064b7b5c3361609f51036672d6d6f3 100644
--- a/docs/zh_CN/models/ImageNet1k/Twins.md
+++ b/docs/zh_CN/models/ImageNet1k/Twins.md
@@ -68,7 +68,7 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/TNT/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/Twins/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
**备注:** 由于 Twins 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
diff --git a/docs/zh_CN/models/ImageNet1k/VGG.md b/docs/zh_CN/models/ImageNet1k/VGG.md
index f4858cd4b61e1c2b3cc342b0ad330d26579e2381..9269a384f7993f543e255850b5a30edca0820424 100644
--- a/docs/zh_CN/models/ImageNet1k/VGG.md
+++ b/docs/zh_CN/models/ImageNet1k/VGG.md
@@ -78,7 +78,7 @@ VGG 由牛津大学计算机视觉组和 DeepMind 公司研究员一起研发的
## 3. 模型训练、评估和预测
-此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/、、、/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
+此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/VGG/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。