Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
8ac51f74
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8ac51f74
编写于
11月 04, 2021
作者:
G
gaotingquan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix: adapt to release 2.3
上级
677f6aea
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
458 addition
and
221 deletion
+458
-221
docs/zh_CN/others/feature_visiualization.md
docs/zh_CN/others/feature_visiualization.md
+30
-28
ppcls/utils/feature_maps_visualization/download_resnet50_pretrained.sh
...eature_maps_visualization/download_resnet50_pretrained.sh
+0
-2
ppcls/utils/feature_maps_visualization/fm_vis.py
ppcls/utils/feature_maps_visualization/fm_vis.py
+3
-8
ppcls/utils/feature_maps_visualization/resnet.py
ppcls/utils/feature_maps_visualization/resnet.py
+425
-183
未找到文件。
docs/zh_CN/others/feature_visiualization.md
浏览文件 @
8ac51f74
...
...
@@ -6,43 +6,45 @@
## 二、准备工作
首先需要选定研究的模型,本文设定ResNet50作为研究模型,将
resnet.py从
[
模型库
](
../../../ppcls/arch/architecture/
)
拷贝到当前目录下,并下载预训练模型
[
预训练模型
](
../../zh_CN/models/models_intro
)
, 复制resnet50的模型链接,使用下列命令下载并解压预训练模型
。
首先需要选定研究的模型,本文设定ResNet50作为研究模型,将
模型组网代码
[
resnet.py
](
../../../ppcls/arch/backbone/legendary_models/resnet.py
)
拷贝到
[
目录
](
../../../ppcls/utils/feature_maps_visualization/
)
下,并下载
[
ResNet50预训练模型
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams
)
,或使用以下命令下载
。
```
bash
wget The Link
for
Pretrained Model
tar
-xf
Downloaded Pretrained Model
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams
```
以resnet50为例:
```
bash
wget https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
tar
-xf
ResNet50_pretrained.tar
```
其他模型网络结构代码及预训练模型请自行下载:
[
模型库
](
../../../ppcls/arch/backbone/
)
,
[
预训练模型
](
../models/models_intro.md
)
。
## 三、修改模型
找到我们所需要的特征图位置,设置self.fm将其fetch出来,本文以resnet50中的stem层之后的特征图为例。
在
fm_vis.py中修改模型的名字。
在
ResNet50的forward函数中指定要可视化的特征图
在ResNet50的__init__函数中定义self.fm
```
python
self
.
fm
=
None
def
forward
(
self
,
x
):
with
paddle
.
static
.
amp
.
fp16_guard
():
if
self
.
data_format
==
"NHWC"
:
x
=
paddle
.
transpose
(
x
,
[
0
,
2
,
3
,
1
])
x
.
stop_gradient
=
True
x
=
self
.
stem
(
x
)
fm
=
x
x
=
self
.
max_pool
(
x
)
x
=
self
.
blocks
(
x
)
x
=
self
.
avg_pool
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc
(
x
)
return
x
,
fm
```
在ResNet50的forward函数中指定特征图
然后修改代码
[
fm_vis.py
](
../../../ppcls/utils/feature_maps_visualization/fm_vis.py
)
,引入
`ResNet50`
,实例化
`net`
对象:
```
python
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
self
.
fm
=
y
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
avg_pool
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
y
=
self
.
out
(
y
)
return
y
,
self
.
fm
from
resnet
import
ResNet50
net
=
ResNet50
()
```
执行函数
最后执行函数
```
bash
python tools/feature_maps_visualization/fm_vis.py
-i
the image you want to
test
\
-c
channel_num
-p
pretrained model
\
...
...
@@ -51,9 +53,10 @@ python tools/feature_maps_visualization/fm_vis.py -i the image you want to test
--save_path
where to save
\
--use_gpu
whether to use gpu
```
参数说明:
+
`-i`
:待预测的图片文件路径,如
`./test.jpeg`
+
`-c`
:特征图维度,如
`
./resnet50_vd/model
`
+
`-c`
:特征图维度,如
`
5
`
+
`-p`
:权重文件路径,如
`./ResNet50_pretrained/`
+
`--interpolation`
: 图像插值方式, 默认值 1
+
`--save_path`
:保存路径,如:
`./tools/`
...
...
@@ -63,7 +66,7 @@ python tools/feature_maps_visualization/fm_vis.py -i the image you want to test
*
输入图片:


*
运行下面的特征图可视化脚本
...
...
@@ -75,10 +78,9 @@ python tools/feature_maps_visualization/fm_vis.py \
--show=True \
--interpolation=1 \
--save_path="./output.png" \
--use_gpu=False \
--load_static_weights=True
--use_gpu=False
```
*
输出特征图保存为
`output.png`
,如下所示。


ppcls/utils/feature_maps_visualization/download_resnet50_pretrained.sh
已删除
100644 → 0
浏览文件 @
677f6aea
wget https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
tar
-xf
ResNet50_pretrained.tar
\ No newline at end of file
ppcls/utils/feature_maps_visualization/fm_vis.py
浏览文件 @
8ac51f74
...
...
@@ -19,7 +19,7 @@ import os
import
sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..
/..
'
)))
import
paddle
from
paddle.distributed
import
ParallelEnv
...
...
@@ -33,18 +33,13 @@ def parse_args():
return
v
.
lower
()
in
(
"true"
,
"t"
,
"1"
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"-i"
,
"--image_file"
,
type
=
str
)
parser
.
add_argument
(
"-i"
,
"--image_file"
,
required
=
True
,
type
=
str
)
parser
.
add_argument
(
"-c"
,
"--channel_num"
,
type
=
int
)
parser
.
add_argument
(
"-p"
,
"--pretrained_model"
,
type
=
str
)
parser
.
add_argument
(
"--show"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--interpolation"
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
"--save_path"
,
type
=
str
,
default
=
None
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--load_static_weights"
,
type
=
str2bool
,
default
=
False
,
help
=
'Whether to load the pretrained weights saved in static mode'
)
return
parser
.
parse_args
()
...
...
@@ -79,7 +74,7 @@ def main():
place
=
paddle
.
set_device
(
place
)
net
=
ResNet50
()
load_dygraph_pretrain
(
net
,
args
.
pretrained_model
,
args
.
load_static_weights
)
load_dygraph_pretrain
(
net
,
args
.
pretrained_model
)
img
=
cv2
.
imread
(
args
.
image_file
,
cv2
.
IMREAD_COLOR
)
data
=
preprocess
(
img
,
operators
)
...
...
ppcls/utils/feature_maps_visualization/resnet.py
浏览文件 @
8ac51f74
# copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -12,126 +12,204 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
absolute_import
,
division
,
print_function
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
import
math
__all__
=
[
"ResNet18"
,
"ResNet34"
,
"ResNet50"
,
"ResNet101"
,
"ResNet152"
]
class
ConvBNLayer
(
nn
.
Layer
):
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"ResNet18"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams"
,
"ResNet18_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams"
,
"ResNet34"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams"
,
"ResNet34_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams"
,
"ResNet50"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams"
,
"ResNet50_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams"
,
"ResNet101"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams"
,
"ResNet101_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams"
,
"ResNet152"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams"
,
"ResNet152_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams"
,
"ResNet200_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams"
,
}
__all__
=
MODEL_URLS
.
keys
()
'''
ResNet config: dict.
key: depth of ResNet.
values: config's dict of specific model.
keys:
block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
block_depth: The number of blocks in different stages in ResNet.
num_channels: The number of channels to enter the next stage.
'''
NET_CONFIG
=
{
"18"
:
{
"block_type"
:
"BasicBlock"
,
"block_depth"
:
[
2
,
2
,
2
,
2
],
"num_channels"
:
[
64
,
64
,
128
,
256
]
},
"34"
:
{
"block_type"
:
"BasicBlock"
,
"block_depth"
:
[
3
,
4
,
6
,
3
],
"num_channels"
:
[
64
,
64
,
128
,
256
]
},
"50"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
4
,
6
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]
},
"101"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
4
,
23
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]
},
"152"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
8
,
36
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]
},
"200"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
12
,
48
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]
},
}
class
ConvBNLayer
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
is_vd_mode
=
False
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
lr_mult
=
1.0
,
data_format
=
"NCHW"
):
super
().
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
act
=
act
self
.
avg_pool
=
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
False
,
data_format
=
data_format
)
self
.
bn
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
),
bias_attr
=
ParamAttr
(
bn_name
+
"_offset"
),
moving_mean_name
=
bn_name
+
"_mean"
,
moving_variance_name
=
bn_name
+
"_variance"
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
param_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
data_layout
=
data_format
)
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
x
):
if
self
.
is_vd_mode
:
x
=
self
.
avg_pool
(
x
)
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
if
self
.
act
:
x
=
self
.
relu
(
x
)
return
x
class
BottleneckBlock
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
name
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
if_first
=
False
,
lr_mult
=
1.0
,
data_format
=
"NCHW"
):
super
().
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"relu"
,
name
=
name
+
"_branch2a"
)
lr_mult
=
lr_mult
,
data_format
=
data_format
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_branch2b"
)
lr_mult
=
lr_mult
,
data_format
=
data_format
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
lr_mult
=
lr_mult
,
data_format
=
data_format
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
stride
=
stride
if
if_first
else
1
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
,
data_format
=
data_format
)
self
.
relu
=
nn
.
ReLU
()
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
def
forward
(
self
,
x
):
identity
=
x
x
=
self
.
conv0
(
x
)
x
=
self
.
conv1
(
x
)
x
=
self
.
conv2
(
x
)
if
self
.
shortcut
:
short
=
i
nputs
short
=
i
dentity
else
:
short
=
self
.
short
(
inputs
)
short
=
self
.
short
(
identity
)
x
=
paddle
.
add
(
x
=
x
,
y
=
short
)
x
=
self
.
relu
(
x
)
return
x
y
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
y
=
F
.
relu
(
y
)
return
y
class
BasicBlock
(
nn
.
Layer
):
class
BasicBlock
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
name
=
None
):
super
(
BasicBlock
,
self
).
__init__
()
if_first
=
False
,
lr_mult
=
1.0
,
data_format
=
"NCHW"
):
super
().
__init__
()
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
...
...
@@ -139,155 +217,319 @@ class BasicBlock(nn.Layer):
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_branch2a"
)
lr_mult
=
lr_mult
,
data_format
=
data_format
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
)
lr_mult
=
lr_mult
,
data_format
=
data_format
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
stride
=
stride
if
if_first
else
1
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
,
data_format
=
data_format
)
self
.
shortcut
=
shortcut
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
def
forward
(
self
,
x
):
identity
=
x
x
=
self
.
conv0
(
x
)
x
=
self
.
conv1
(
x
)
if
self
.
shortcut
:
short
=
i
nputs
short
=
i
dentity
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv1
)
y
=
F
.
relu
(
y
)
return
y
class
ResNet
(
nn
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
18
,
34
,
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
18
:
depth
=
[
2
,
2
,
2
,
2
]
elif
layers
==
34
or
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
feature_map
=
None
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
"relu"
,
name
=
"conv1"
)
self
.
pool2d_max
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
conv_name
,
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
else
:
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
basic_block
=
self
.
add_sublayer
(
conv_name
,
BasicBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
],
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
block_list
.
append
(
basic_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2D
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_0.w_0"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0.b_0"
))
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
self
.
feature_map
=
y
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
,
self
.
feature_map
def
ResNet18
(
**
args
):
model
=
ResNet
(
layers
=
18
,
**
args
)
short
=
self
.
short
(
identity
)
x
=
paddle
.
add
(
x
=
x
,
y
=
short
)
x
=
self
.
relu
(
x
)
return
x
class
ResNet
(
TheseusLayer
):
"""
ResNet
Args:
config: dict. config of ResNet.
version: str="vb". Different version of ResNet, version vd can perform better.
class_num: int=1000. The number of classes.
lr_mult_list: list. Control the learning rate of different stages.
Returns:
model: nn.Layer. Specific ResNet model depends on args.
"""
def
__init__
(
self
,
config
,
version
=
"vb"
,
class_num
=
1000
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
data_format
=
"NCHW"
,
input_image_channel
=
3
,
return_patterns
=
None
):
super
().
__init__
()
self
.
cfg
=
config
self
.
lr_mult_list
=
lr_mult_list
self
.
is_vd_mode
=
version
==
"vd"
self
.
class_num
=
class_num
self
.
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
block_depth
=
self
.
cfg
[
"block_depth"
]
self
.
block_type
=
self
.
cfg
[
"block_type"
]
self
.
num_channels
=
self
.
cfg
[
"num_channels"
]
self
.
channels_mult
=
1
if
self
.
num_channels
[
-
1
]
==
256
else
4
assert
isinstance
(
self
.
lr_mult_list
,
(
list
,
tuple
)),
"lr_mult_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
lr_mult_list
))
assert
len
(
self
.
lr_mult_list
)
==
5
,
"lr_mult_list length should be 5 but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
self
.
stem_cfg
=
{
#num_channels, num_filters, filter_size, stride
"vb"
:
[[
input_image_channel
,
64
,
7
,
2
]],
"vd"
:
[[
input_image_channel
,
32
,
3
,
2
],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]
}
self
.
stem
=
nn
.
Sequential
(
*
[
ConvBNLayer
(
num_channels
=
in_c
,
num_filters
=
out_c
,
filter_size
=
k
,
stride
=
s
,
act
=
"relu"
,
lr_mult
=
self
.
lr_mult_list
[
0
],
data_format
=
data_format
)
for
in_c
,
out_c
,
k
,
s
in
self
.
stem_cfg
[
version
]
])
self
.
max_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
data_format
=
data_format
)
block_list
=
[]
for
block_idx
in
range
(
len
(
self
.
block_depth
)):
shortcut
=
False
for
i
in
range
(
self
.
block_depth
[
block_idx
]):
block_list
.
append
(
globals
()[
self
.
block_type
](
num_channels
=
self
.
num_channels
[
block_idx
]
if
i
==
0
else
self
.
num_filters
[
block_idx
]
*
self
.
channels_mult
,
num_filters
=
self
.
num_filters
[
block_idx
],
stride
=
2
if
i
==
0
and
block_idx
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block_idx
==
i
==
0
if
version
==
"vd"
else
True
,
lr_mult
=
self
.
lr_mult_list
[
block_idx
+
1
],
data_format
=
data_format
))
shortcut
=
True
self
.
blocks
=
nn
.
Sequential
(
*
block_list
)
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
,
data_format
=
data_format
)
self
.
flatten
=
nn
.
Flatten
()
self
.
avg_pool_channels
=
self
.
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
avg_pool_channels
*
1.0
)
self
.
fc
=
Linear
(
self
.
avg_pool_channels
,
self
.
class_num
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
self
.
data_format
=
data_format
if
return_patterns
is
not
None
:
self
.
update_res
(
return_patterns
)
self
.
register_forward_post_hook
(
self
.
_return_dict_hook
)
def
forward
(
self
,
x
):
with
paddle
.
static
.
amp
.
fp16_guard
():
if
self
.
data_format
==
"NHWC"
:
x
=
paddle
.
transpose
(
x
,
[
0
,
2
,
3
,
1
])
x
.
stop_gradient
=
True
x
=
self
.
stem
(
x
)
fm
=
x
x
=
self
.
max_pool
(
x
)
x
=
self
.
blocks
(
x
)
x
=
self
.
avg_pool
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc
(
x
)
return
x
,
fm
def
_load_pretrained
(
pretrained
,
model
,
model_url
,
use_ssld
):
if
pretrained
is
False
:
pass
elif
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
model_url
,
use_ssld
=
use_ssld
)
elif
isinstance
(
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def
ResNet18
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet18
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"18"
],
version
=
"vb"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet18"
],
use_ssld
)
return
model
def
ResNet18_vd
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet18_vd
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet18_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"18"
],
version
=
"vd"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet18_vd"
],
use_ssld
)
return
model
def
ResNet34
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet34
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"34"
],
version
=
"vb"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet34"
],
use_ssld
)
return
model
def
ResNet34_vd
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet34_vd
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet34_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"34"
],
version
=
"vd"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet34_vd"
],
use_ssld
)
return
model
def
ResNet50
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet50
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"50"
],
version
=
"vb"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet50"
],
use_ssld
)
return
model
def
ResNet50_vd
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet50_vd
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet50_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"50"
],
version
=
"vd"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet50_vd"
],
use_ssld
)
return
model
def
ResNet101
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet101
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"101"
],
version
=
"vb"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet101"
],
use_ssld
)
return
model
def
ResNet34
(
**
args
):
model
=
ResNet
(
layers
=
34
,
**
args
)
def
ResNet101_vd
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet101_vd
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet101_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"101"
],
version
=
"vd"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet101_vd"
],
use_ssld
)
return
model
def
ResNet50
(
**
args
):
model
=
ResNet
(
layers
=
50
,
**
args
)
def
ResNet152
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet152
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"152"
],
version
=
"vb"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet152"
],
use_ssld
)
return
model
def
ResNet101
(
**
args
):
model
=
ResNet
(
layers
=
101
,
**
args
)
def
ResNet152_vd
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet152_vd
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet152_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"152"
],
version
=
"vd"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet152_vd"
],
use_ssld
)
return
model
def
ResNet152
(
**
args
):
model
=
ResNet
(
layers
=
152
,
**
args
)
def
ResNet200_vd
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
"""
ResNet200_vd
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet200_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"200"
],
version
=
"vd"
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNet200_vd"
],
use_ssld
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录