Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
898f12c3
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
898f12c3
编写于
6月 20, 2022
作者:
G
gaotingquan
提交者:
Tingquan Gao
9月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
docs: update metrics
上级
8b7b211b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
33 addition
and
33 deletion
+33
-33
docs/zh_CN/algorithm_introduction/ImageNet_models.md
docs/zh_CN/algorithm_introduction/ImageNet_models.md
+33
-33
未找到文件。
docs/zh_CN/algorithm_introduction/ImageNet_models.md
浏览文件 @
898f12c3
...
...
@@ -354,24 +354,24 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| ViT_small_
<br/>
patch16_224 | 0.7
769 | 0.9342
| 3.71 | 9.05 | 16.72 | 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_224 | 0.81
95 | 0.9617
| 6.12 | 14.84 | 28.51 | 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar
)
|
| ViT_small_
<br/>
patch16_224 | 0.7
553 | 0.9211
| 3.71 | 9.05 | 16.72 | 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_224 | 0.81
87 | 0.9618
| 6.12 | 14.84 | 28.51 | 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 | 14.15 | 48.38 | 95.06 | 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 | 4.94 | 13.43 | 24.08 | 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar
)
|
| ViT_large_
<br/>
patch16_224 | 0.83
23 | 0.9650
| 15.53 | 49.50 | 94.09 | 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar
)
|
| ViT_large_
<br/>
patch16_224 | 0.83
03 | 0.9655
| 15.53 | 49.50 | 94.09 | 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar
)
|
|ViT_large_
<br/>
patch16_384| 0.8513 | 0.9736 | 39.51 | 152.46 | 304.06 | 174.70 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar
)
|
|ViT_large_
<br/>
patch32_384| 0.8153 | 0.9608 | 11.44 | 36.09 | 70.63 | 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| DeiT_tiny_
<br>
patch16_224 | 0.7
18 | 0.910
| 3.61 | 3.94 | 6.10 | 1.07 | 5.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
patch16_224 | 0.79
6 | 0.949
| 3.61 | 6.24 | 10.49 | 4.24 | 21.97 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_224 | 0.81
7 | 0.957
| 6.13 | 14.87 | 28.50 | 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_384 | 0.8
30 | 0.962
| 14.12 | 48.80 | 97.60 | 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.74
1 | 0.918
| 3.51 | 4.05 | 6.03 | 1.08 | 5.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.8
09 | 0.953
| 3.70 | 6.20 | 10.53 | 4.26 | 22.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.83
1 | 0.964
| 6.17 | 14.94 | 28.58 | 16.93 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.85
1 | 0.973
| 14.12 | 48.76 | 97.09 | 49.43 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
patch16_224 | 0.7
208 | 0.9112
| 3.61 | 3.94 | 6.10 | 1.07 | 5.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
patch16_224 | 0.79
82 | 0.9495
| 3.61 | 6.24 | 10.49 | 4.24 | 21.97 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_224 | 0.81
80 | 0.9558
| 6.13 | 14.87 | 28.50 | 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_384 | 0.8
289 | 0.9624
| 14.12 | 48.80 | 97.60 | 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.74
49 | 0.9192
| 3.51 | 4.05 | 6.03 | 1.08 | 5.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.8
117 | 0.9538
| 3.70 | 6.20 | 10.53 | 4.26 | 22.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.83
30 | 0.9647
| 6.17 | 14.94 | 28.58 | 16.93 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.85
20 | 0.9720
| 14.12 | 48.76 | 97.09 | 49.43 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar
)
|
<a
name=
"RepVGG"
></a>
...
...
@@ -426,14 +426,14 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224 | 0.8
069 | 0.9534
| 6.59 | 9.68 | 16.32 | 4.35 | 28.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
)
|
| SwinTransformer_small_patch4_window7_224 | 0.8
275 | 0.9613
| 12.54 | 17.07 | 28.08 | 8.51 | 49.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224 | 0.83
00 | 0.9626
| 13.37 | 23.53 | 39.11 | 15.13 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384 | 0.84
39 | 0.9693
| 19.52 | 64.56 | 123.30 | 44.45 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8
487 | 0.9746
| 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.86
42 | 0.9807
| 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8
596 | 0.9783
| 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_22kto1k_infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.87
19 | 0.9823
| 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_22kto1k_infer.tar
)
|
| SwinTransformer_tiny_patch4_window7_224 | 0.8
110 | 0.9549
| 6.59 | 9.68 | 16.32 | 4.35 | 28.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
)
|
| SwinTransformer_small_patch4_window7_224 | 0.8
321 | 0.9622
| 12.54 | 17.07 | 28.08 | 8.51 | 49.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224 | 0.83
37 | 0.9643
| 13.37 | 23.53 | 39.11 | 15.13 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384 | 0.84
17 | 0.9674
| 19.52 | 64.56 | 123.30 | 44.45 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8
516 | 0.9748
| 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.86
34 | 0.9798
| 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8
619 | 0.9788
| 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_22kto1k_infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.87
06 | 0.9814
| 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_22kto1k_infer.tar
)
|
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
...
...
@@ -446,7 +446,7 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128S_infer.tar
)
|
| LeViT_128 | 0.7810 | 0.937
1
| | | | 365 | 8.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar
)
|
| LeViT_128 | 0.7810 | 0.937
2
| | | | 365 | 8.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar
)
|
| LeViT_192 | 0.7934 | 0.9446 | | | | 597 | 10.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar
)
|
| LeViT_256 | 0.8085 | 0.9497 | | | | 1049 | 18.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar
)
|
| LeViT_384 | 0.8191 | 0.9551 | | | | 2234 | 38.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar
)
|
...
...
@@ -461,12 +461,12 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| pcpvt_small | 0.8
082 | 0.9552
| 7.32 | 10.51 | 15.27 |3.67 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar
)
|
| pcpvt_base | 0.82
42 | 0.9619
| 12.20 | 16.22 | 23.16 | 6.44 | 43.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar
)
|
| pcpvt_large | 0.8
273 | 0.9650
| 16.47 | 22.90 | 32.73 | 9.50 | 60.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar
)
|
| alt_gvt_small | 0.81
40 | 0.9546
| 6.94 | 9.01 | 12.27 |2.81 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar
)
|
| alt_gvt_base | 0.8
294 | 0.9621
| 9.37 | 15.02 | 24.54 | 8.34 | 56.07 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar
)
|
| alt_gvt_large | 0.83
31 | 0.9642
| 11.76 | 22.08 | 35.12 | 14.81 | 99.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar
)
|
| pcpvt_small | 0.8
115 | 0.9567
| 7.32 | 10.51 | 15.27 |3.67 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar
)
|
| pcpvt_base | 0.82
68 | 0.9627
| 12.20 | 16.22 | 23.16 | 6.44 | 43.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar
)
|
| pcpvt_large | 0.8
306 | 0.9659
| 16.47 | 22.90 | 32.73 | 9.50 | 60.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar
)
|
| alt_gvt_small | 0.81
77 | 0.9557
| 6.94 | 9.01 | 12.27 |2.81 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar
)
|
| alt_gvt_base | 0.8
315 | 0.9629
| 9.37 | 15.02 | 24.54 | 8.34 | 56.07 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar
)
|
| alt_gvt_large | 0.83
64 | 0.9651
| 11.76 | 22.08 | 35.12 | 14.81 | 99.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar
)
|
**注**
:与 Reference 的精度差异源于数据预处理不同。
...
...
@@ -551,13 +551,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| PVT_V2_B0 | 0.705
| 0.902
| - | - | - | 0.53 | 3.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B0_infer.tar
)
|
| PVT_V2_B1 | 0.78
7 | 0.945
| - | - | - | 2.0 | 14.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B1_infer.tar
)
|
| PVT_V2_B2 | 0.82
1 | 0.960
| - | - | - | 3.9 | 25.4 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_infer.tar
)
|
| PVT_V2_B2_Linear | 0.82
1 | 0.961
| - | - | - | 3.8 | 22.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_Linear_infer.tar
)
|
| PVT_V2_B3 | 0.831
| 0.965
| - | - |- | 6.7 | 45.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B3_infer.tar
)
|
| PVT_V2_B4 | 0.836
| 0.967
| - | - | - | 9.8 | 62.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B4_infer.tar
)
|
| PVT_V2_B5 | 0.837
| 0.966
| - | - | - | 11.4 | 82.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B5_infer.tar
)
|
| PVT_V2_B0 | 0.705
2 | 0.9016
| - | - | - | 0.53 | 3.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B0_infer.tar
)
|
| PVT_V2_B1 | 0.78
69 | 0.9450
| - | - | - | 2.0 | 14.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B1_infer.tar
)
|
| PVT_V2_B2 | 0.82
06 | 0.9599
| - | - | - | 3.9 | 25.4 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_infer.tar
)
|
| PVT_V2_B2_Linear | 0.82
05 | 0.9605
| - | - | - | 3.8 | 22.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_Linear_infer.tar
)
|
| PVT_V2_B3 | 0.831
0 | 0.9648
| - | - |- | 6.7 | 45.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B3_infer.tar
)
|
| PVT_V2_B4 | 0.836
1 | 0.9666
| - | - | - | 9.8 | 62.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B4_infer.tar
)
|
| PVT_V2_B5 | 0.837
4 | 0.9662
| - | - | - | 11.4 | 82.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B5_infer.tar
)
|
<a
name=
"MobileViT"
></a>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录