提交 88295413 编写于 作者: H HydrogenSulfate

add re-ranking code

上级 283ae9b3
......@@ -12,6 +12,7 @@ Global:
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "backbone" # 'backbone' or 'neck'
re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
......
......@@ -12,6 +12,7 @@ Global:
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "features" # 'backbone' or 'features'
re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
......
......@@ -12,6 +12,7 @@ Global:
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "features" # 'backbone' or 'features'
re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
......
......@@ -16,6 +16,9 @@ from __future__ import division
from __future__ import print_function
import platform
from typing import Optional
import numpy as np
import paddle
from ppcls.utils import logger
......@@ -48,10 +51,44 @@ def retrieval_eval(engine, epoch_id=0):
if engine.eval_loss_func is None:
metric_dict = {metric_key: 0.}
else:
reranking_flag = engine.config['Global'].get('re_ranking', False)
logger.info(f"re_ranking={reranking_flag}")
metric_dict = dict()
if reranking_flag:
# set the order from small to large
for i in range(len(engine.eval_metric_func.metric_func_list)):
if hasattr(engine.eval_metric_func.metric_func_list[i], 'descending') \
and engine.eval_metric_func.metric_func_list[i].descending is True:
engine.eval_metric_func.metric_func_list[
i].descending = False
logger.info(
f"set {engine.eval_metric_func.metric_func_list[i].__class__.__name__}.descending to False when re_ranking=True"
)
# compute distance matrix(The smaller the value, the more similar)
distmat = re_ranking(
query_feas, gallery_feas, k1=20, k2=6, lambda_value=0.3)
distmat = paddle.to_tensor(distmat)
# compute keep mask
query_id_mask = (query_query_id != gallery_unique_id.t())
image_id_mask = (query_img_id != gallery_img_id.t())
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
# set inf(1e9) distance to those exist in gallery
distmat = distmat * keep_mask.astype("float32")
inf_mat = (paddle.logical_not(keep_mask).astype("float32")) * 1e20
distmat = distmat + inf_mat
# compute metric
metric_tmp = engine.eval_metric_func(distmat, query_img_id,
gallery_img_id, keep_mask)
for key in metric_tmp:
metric_dict[key] = metric_tmp[key]
else:
for block_idx, block_fea in enumerate(fea_blocks):
similarity_matrix = paddle.matmul(
block_fea, gallery_feas, transpose_y=True)
block_fea, gallery_feas, transpose_y=True) # [n,m]
if query_query_id is not None:
query_id_block = query_id_blocks[block_idx]
query_id_mask = (query_id_block != gallery_unique_id.t())
......@@ -65,8 +102,8 @@ def retrieval_eval(engine, epoch_id=0):
else:
keep_mask = None
metric_tmp = engine.eval_metric_func(similarity_matrix,
image_id_blocks[block_idx],
metric_tmp = engine.eval_metric_func(
similarity_matrix, image_id_blocks[block_idx],
gallery_img_id, keep_mask)
for key in metric_tmp:
......@@ -185,3 +222,109 @@ def cal_feature(engine, name='gallery'):
logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
name, all_feas.shape))
return all_feas, all_img_id, all_unique_id
def re_ranking(query_feas: paddle.Tensor,
gallery_feas: paddle.Tensor,
k1: int=20,
k2: int=6,
lambda_value: int=0.5,
local_distmat: Optional[np.ndarray]=None,
only_local: bool=False) -> paddle.Tensor:
"""re-ranking, most computed with numpy
code heavily based on
https://github.com/michuanhaohao/reid-strong-baseline/blob/3da7e6f03164a92e696cb6da059b1cd771b0346d/utils/reid_metric.py
Args:
query_feas (paddle.Tensor): query features, [num_query, num_features]
gallery_feas (paddle.Tensor): gallery features, [num_gallery, num_features]
k1 (int, optional): k1. Defaults to 20.
k2 (int, optional): k2. Defaults to 6.
lambda_value (int, optional): lambda. Defaults to 0.5.
local_distmat (Optional[np.ndarray], optional): local_distmat. Defaults to None.
only_local (bool, optional): only_local. Defaults to False.
Returns:
paddle.Tensor: final_dist matrix after re-ranking, [num_query, num_gallery]
"""
query_num = query_feas.shape[0]
all_num = query_num + gallery_feas.shape[0]
if only_local:
original_dist = local_distmat
else:
feat = paddle.concat([query_feas, gallery_feas])
logger.info('using GPU to compute original distance')
# L2 distance
distmat = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]) + \
paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]).t()
distmat = distmat.addmm(x=feat, y=feat.t(), alpha=-2.0, beta=1.0)
original_dist = distmat.cpu().numpy()
del feat
if local_distmat is not None:
original_dist = original_dist + local_distmat
gallery_num = original_dist.shape[0]
original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
V = np.zeros_like(original_dist).astype(np.float16)
initial_rank = np.argsort(original_dist).astype(np.int32)
logger.info('starting re_ranking')
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate, :int(
np.around(k1 / 2)) + 1]
candidate_backward_k_neigh_index = initial_rank[
candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1]
fi_candidate = np.where(
candidate_backward_k_neigh_index == candidate)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[
fi_candidate]
if len(
np.intersect1d(candidate_k_reciprocal_index,
k_reciprocal_index)) > 2 / 3 * len(
candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(
k_reciprocal_expansion_index, candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
if k2 != 1:
V_qe = np.zeros_like(V, dtype=np.float16)
for i in range(all_num):
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(gallery_num):
invIndex.append(np.where(V[:, i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
for i in range(query_num):
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16)
indNonZero = np.where(V[i, :] != 0)[0]
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
V[i, indNonZero[j]], V[indImages[j], indNonZero[j]])
jaccard_dist[i] = 1 - temp_min / (2 - temp_min)
final_dist = jaccard_dist * (1 - lambda_value
) + original_dist * lambda_value
del original_dist
del V
del jaccard_dist
final_dist = final_dist[:query_num, query_num:]
final_dist = paddle.to_tensor(final_dist)
return final_dist
......@@ -43,15 +43,16 @@ class TopkAcc(nn.Layer):
class mAP(nn.Layer):
def __init__(self):
def __init__(self, descending=True):
super().__init__()
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
......@@ -87,15 +88,16 @@ class mAP(nn.Layer):
class mINP(nn.Layer):
def __init__(self):
def __init__(self, descending=True):
super().__init__()
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
......@@ -130,12 +132,13 @@ class mINP(nn.Layer):
class Recallk(nn.Layer):
def __init__(self, topk=(1, 5)):
def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
......@@ -143,7 +146,7 @@ class Recallk(nn.Layer):
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
......@@ -175,12 +178,13 @@ class Recallk(nn.Layer):
class Precisionk(nn.Layer):
def __init__(self, topk=(1, 5)):
def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
......@@ -188,7 +192,7 @@ class Precisionk(nn.Layer):
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册