diff --git a/README.md b/README.md index 7355db76f9b51fcb48577bbb51c3c13ee4b9fd58..a5942979f8cf77628bf6d453cec90e6ff16d30ac 100644 --- a/README.md +++ b/README.md @@ -20,14 +20,14 @@ PaddleCLS的目的是为工业界和学术界提供一个图像分类任务相 基于ImageNet1k分类数据集,PaddleCLS提供ResNet、ResNet_vd、EfficientNet、Res2Net、HRNet、MobileNetV3等17种主流分类网络结构的简单介绍,论文指标复现配置,以及在复现过程中的调参技巧。与此同时,PaddleCLS也提供了118个图像分类预训练模型,并且基于TensorRT评估了所有模型的GPU预测时间,以及在骁龙855(SD855)上评估了移动端模型的CPU预测时间和存储大小。 -上图展示了一些适合服务器端应用的模型,使用V100 GPU,FP16和TensorRT预测一个batch的时间,其中batch_size=32,图中ResNet50_vd_ssld,是采用PaddleCLS提供的SSLD蒸馏方法训练的模型。不同模型的Flops和Params、FP16和FP32的预测时间以及不同batch_size的预测时间正在持续更新中。 +上图展示了一些适合服务器端应用的模型,使用V100 GPU,FP16和TensorRT预测一个batch的时间,其中batch_size=32,图中ResNet50_vd_ssld,是采用PaddleCLS提供的SSLD蒸馏方法训练的模型。不同模型的FLOPS和Parameters、FP16和FP32的预测时间以及不同batch_size的预测时间正在持续更新中。