diff --git a/docs/zh_CN/PULC/PULC_person_exists.md b/docs/zh_CN/PULC/PULC_person_exists.md index a5804e18364e1b66058164d4e12931256265365d..c4bb8c75cc4ac805e0e27dbf2810c3ecb6d48adf 100644 --- a/docs/zh_CN/PULC/PULC_person_exists.md +++ b/docs/zh_CN/PULC/PULC_person_exists.md @@ -17,14 +17,13 @@ - [3.3 模型评估](#3.3) - [3.4 模型预测](#3.4) - [4. 模型压缩](#4) - - [4.1 知识蒸馏](#4.1) + - [4.1 SKL-UGI 知识蒸馏](#4.1) - [4.1.1 教师模型训练](#4.1.1) - - [4.1.2 SKL-UGI知识蒸馏](#4.1.2) - - [4.2 模型量化](#4.2) + - [4.1.2 蒸馏训练](#4.1.2) - [5. 超参搜索](#5) - [6. 模型推理部署](#6) - [6.1 推理模型准备](#6.1) - - [6.1.1 导出 inference 模型](#6.1.1) + - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1) - [6.1.2 直接下载 inference 模型](#6.1.2) - [6.2 基于 Python 预测引擎推理](#6.2) - [6.2.1 预测单张图像](#6.2.1) @@ -39,59 +38,58 @@ ## 1. 模型和应用场景介绍 -该案例提供了可以产出超轻量级二分类模型的方法。使用该方法训练得到的模型可以快速判断图片中是否有人,该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。 +该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的有人/无人的分类模型。该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。 + +下表列出了判断图片中是否有人的二分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。 -下表列出了判断图片中是否有人的二分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。其中,最后一行的模型融合了前边的所有的训练策略, 即为通过 PULC 策略训练得到的模型,该模型与其他较大的模型相比,相同推理速度下拥有更高的精度,相同推理速度下拥有更高的精度。比如,与 SwinTransformer-tiny 相比,PULC 得到的模型在相同精度下,速度快 70+ 倍。训练方法和推理部署方法将在下面详细介绍。 | 模型 | Tpr(%) | 延时(ms) | 存储(M) | 策略 | |-------|-----------|----------|---------------|---------------| -| SwinTranformer_tiny | 95.69 | 175.52 | 107 | 使用ImageNet预训练模型 | -| MobileNetV3_large_x1_0 | 91.97 | 4.70 | 17 | 使用ImageNet预训练模型 | -| PPLCNet_x1_0 | 89.57 | 2.36 | 6.5 | 使用ImageNet预训练模型 | -| PPLCNet_x1_0 | 92.10 | 2.36 | 6.5 | 使用SSLD预训练模型 | -| PPLCNet_x1_0 | 93.43 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略| -| PPLCNet_x1_0 | 95.60 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略| +| SwinTranformer_tiny | 95.69 | 175.52 | 107 | 使用ImageNet预训练模型 | +| MobileNetV3_large_x1_0 | 91.97 | 4.70 | 17 | 使用ImageNet预训练模型 | +| PPLCNet_x1_0 | 89.57 | 2.36 | 6.5 | 使用ImageNet预训练模型 | +| PPLCNet_x1_0 | 92.10 | 2.36 | 6.5 | 使用SSLD预训练模型 | +| PPLCNet_x1_0 | 93.43 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略| +| PPLCNet_x1_0 | 95.60 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略| - +从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_large_x1_0 低两个多百分点,但是速度提升 2 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 2.6 个百分点,进一步地,当融合EDA策略后,精度可以再提升 1.3 个百分点,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 2.2 个百分点。此时,PPLCNet_x1_0 达到了 SwinTranformer_tiny 模型的精度,但是速度快 70+ 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。 + **备注:** -* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,测试过程开启了 MKLDNN 加速策略,线程数为 10。 +* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启MKLDNN加速策略,线程数为10。 * 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)。 ## 2. 模型快速体验 + + (pip方式,待补充) + + + - +## 3. 模型训练、评估和预测 + + -### 2.1 环境配置 +### 3.1 环境配置 * 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。 - - -### 2.2 三行命令快速体验 - -(pip方式,待补充) - - - -## 3. 模型训练、评估和预测 - - + ### 3.1 数据准备 - + -#### 3.1.1 数据集来源 +#### 3.2.1 数据集来源 本案例中所使用的所有数据集均为开源数据,`train` 集合为[MS-COCO 数据](https://cocodataset.org/#overview)的训练集的子集,`val` 集合为[Object365 数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val` 为[ImageNet-1k 数据](https://www.image-net.org/)的验证集。 - + -#### 3.1.2 数据集获取 +#### 3.2.2 数据集获取 在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下: @@ -144,12 +142,18 @@ cd ../ └── val_list.txt.debug ``` -其中 `train/` 和 `val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug` 和 `val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt` 和 `val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt` 。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](@ruoyu)。 +其中 `train/` 和 `val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug` 和 `val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt` 和 `val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt` 。 + +**备注:** + +* 关于 `train_list.txt`、`val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。 + +* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得](@ruoyu)。 - + -### 3.2 模型训练 +### 3.3 模型训练 在 `ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练: @@ -170,9 +174,9 @@ python3 -m paddle.distributed.launch \ * 在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的 `Fpr`、`Tpr` 值,以及当前的 `threshold`值,`Tpr` 值反映了在当前 `Fpr` 值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳 `Fpr` 所对应的分类阈值,可用于后续模型部署落地等。 - + -### 3.3 模型评估 +### 3.4 模型评估 训练好模型之后,可以通过以下命令实现对模型指标的评估。 @@ -184,9 +188,9 @@ python3 tools/eval.py \ 其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 - + -### 3.4 模型预测 +### 3.5 模型预测 模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: @@ -211,13 +215,16 @@ python3 tools/infer.py \ * 这里的 `Infer.PostProcess.threshold` 的值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。 + ## 4. 模型压缩 -### 4.1 知识蒸馏 +### 4.1 SKL-UGI 知识蒸馏 + +SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu) @@ -238,7 +245,7 @@ python3 -m paddle.distributed.launch \ -#### 4.1.2 SKL-UGI知识蒸馏 +#### 4.1.2 蒸馏训练 配置文件`ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下: @@ -253,17 +260,12 @@ python3 -m paddle.distributed.launch \ 验证集的最佳指标为 `0.95-0.97` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。 - - -### 4.2 模型量化 - -PaddleClas 提供了基于 [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) 的模型量化示例,量化后的模型体积更小、推理速度更快。您可以参考[模型量化教程](#TODO)来完成该模型的量化。 ## 5. 超参搜索 -在 [3.2 节](#3.1)和 [4.1](#4.1) 节所使用的超参数是根据PaddleClas提供的 `SHAS超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS超参数搜索策略](#TODO)来获得更好的训练超参数。 +在3.2节和4.1节所使用的超参数是根据PaddleClas提供的 `SHAS超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS超参数搜索策略](#TODO)来获得更好的训练超参数。 **备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。 @@ -275,11 +277,13 @@ PaddleClas 提供了基于 [PaddleSlim](https://github.com/PaddlePaddle/PaddleSl ### 6.1 推理模型准备 -PaddlePaddle 支持使用预测引擎对 inference 模型进行预测推理。本节提供了两种得到 inference 模型的方法,如果希望得到和文档相同的结果,请选择直接下载 inference 模型的方式。 +Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 + +当使用 Paddle Inference 推理时,加载的模型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。 -### 6.1.1 导出 inference 模型 +### 6.1.1 基于训练得到的权重导出 inference 模型 此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型: @@ -378,24 +382,30 @@ objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['so ### 6.3 基于 C++ 预测引擎推理 -PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 +PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 ### 6.4 服务化部署 +Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 + PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。 ### 6.5 端侧部署 +Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 + PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来 完成相应的部署工作。 ### 6.6 Paddle2ONNX模型转换与预测 + +Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对ONNX开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 -PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并做推理预测的示例,您可以参考[Paddle2ONNX模型转换与预测](@shuilong)来 +PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX模型转换与预测](@shuilong)来 完成相应的部署工作。