diff --git a/ppcls/modeling/architectures/dpn.py b/ppcls/modeling/architectures/dpn.py index 1810957b7af1438e499270f08466ca663edf6c4f..58966cabce30818d20e31525976562b14bdb7d1f 100644 --- a/ppcls/modeling/architectures/dpn.py +++ b/ppcls/modeling/architectures/dpn.py @@ -19,9 +19,10 @@ from __future__ import print_function import numpy as np import sys import paddle -import paddle.fluid as fluid -from paddle.fluid.param_attr import ParamAttr -from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear +from paddle import ParamAttr +import paddle.nn as nn +from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear +from paddle.nn.initializer import Uniform import math @@ -35,7 +36,7 @@ __all__ = [ ] -class ConvBNLayer(fluid.dygraph.Layer): +class ConvBNLayer(nn.Layer): def __init__(self, num_channels, num_filters, @@ -47,15 +48,14 @@ class ConvBNLayer(fluid.dygraph.Layer): name=None): super(ConvBNLayer, self).__init__() - self._conv = Conv2D( - num_channels=num_channels, - num_filters=num_filters, - filter_size=filter_size, + self._conv = Conv2d( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=filter_size, stride=stride, padding=pad, groups=groups, - act=None, - param_attr=ParamAttr(name=name + "_weights"), + weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False) self._batch_norm = BatchNorm( num_filters, @@ -71,7 +71,7 @@ class ConvBNLayer(fluid.dygraph.Layer): return y -class BNACConvLayer(fluid.dygraph.Layer): +class BNACConvLayer(nn.Layer): def __init__(self, num_channels, num_filters, @@ -83,7 +83,6 @@ class BNACConvLayer(fluid.dygraph.Layer): name=None): super(BNACConvLayer, self).__init__() self.num_channels = num_channels - self.name = name self._batch_norm = BatchNorm( num_channels, @@ -93,15 +92,14 @@ class BNACConvLayer(fluid.dygraph.Layer): moving_mean_name=name + '_bn_mean', moving_variance_name=name + '_bn_variance') - self._conv = Conv2D( - num_channels=num_channels, - num_filters=num_filters, - filter_size=filter_size, + self._conv = Conv2d( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=filter_size, stride=stride, padding=pad, groups=groups, - act=None, - param_attr=ParamAttr(name=name + "_weights"), + weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False) def forward(self, input): @@ -110,7 +108,7 @@ class BNACConvLayer(fluid.dygraph.Layer): return y -class DualPathFactory(fluid.dygraph.Layer): +class DualPathFactory(nn.Layer): def __init__(self, num_channels, num_1x1_a, @@ -183,14 +181,14 @@ class DualPathFactory(fluid.dygraph.Layer): def forward(self, input): # PROJ if isinstance(input, list): - data_in = fluid.layers.concat([input[0], input[1]], axis=1) + data_in = paddle.concat([input[0], input[1]], axis=1) else: data_in = input if self.has_proj: c1x1_w = self.c1x1_w_func(data_in) - data_o1, data_o2 = fluid.layers.split( - c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], dim=1) + data_o1, data_o2 = paddle.split( + c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], axis=1) else: data_o1 = input[0] data_o2 = input[1] @@ -199,17 +197,17 @@ class DualPathFactory(fluid.dygraph.Layer): c3x3_b = self.c3x3_b_func(c1x1_a) c1x1_c = self.c1x1_c_func(c3x3_b) - c1x1_c1, c1x1_c2 = fluid.layers.split( - c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], dim=1) + c1x1_c1, c1x1_c2 = paddle.split( + c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], axis=1) # OUTPUTS - summ = fluid.layers.elementwise_add(x=data_o1, y=c1x1_c1) - dense = fluid.layers.concat([data_o2, c1x1_c2], axis=1) + summ = paddle.elementwise_add(x=data_o1, y=c1x1_c1) + dense = paddle.concat([data_o2, c1x1_c2], axis=1) # tensor, channels return [summ, dense] -class DPN(fluid.dygraph.Layer): +class DPN(nn.Layer): def __init__(self, layers=60, class_dim=1000): super(DPN, self).__init__() @@ -310,9 +308,8 @@ class DPN(fluid.dygraph.Layer): self.out = Linear( out_channel, class_dim, - param_attr=ParamAttr( - initializer=fluid.initializer.Uniform(-stdv, stdv), - name="fc_weights"), + weight_attr=ParamAttr( + initializer=Uniform(-stdv, stdv), name="fc_weights"), bias_attr=ParamAttr(name="fc_offset")) def forward(self, input): @@ -327,11 +324,11 @@ class DPN(fluid.dygraph.Layer): convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x) dpn_idx += 1 - conv5_x_x = fluid.layers.concat(convX_x_x, axis=1) + conv5_x_x = paddle.concat(convX_x_x, axis=1) conv5_x_x = self.conv5_x_x_bn(conv5_x_x) y = self.pool2d_avg(conv5_x_x) - y = fluid.layers.reshape(y, shape=[0, -1]) + y = paddle.reshape(y, shape=[0, -1]) y = self.out(y) return y