diff --git a/ppcls/optimizer/__init__.py b/ppcls/optimizer/__init__.py index cc0041137b0abe436a2c4a137cd209cfe211236e..b7b4d42105ea8f71d41f12f4a93423ea65707e2f 100644 --- a/ppcls/optimizer/__init__.py +++ b/ppcls/optimizer/__init__.py @@ -51,7 +51,7 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): optim_name = optim_config.pop("name") optim_config: List[Dict[str, Dict]] = [{ optim_name: { - 'scope': config["Arch"].get("name"), + 'scope': "all", ** optim_config } @@ -59,10 +59,10 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): optim_list = [] lr_list = [] for optim_item in optim_config: - # optim_cfg = {optim_name1: {scope: xxx, **optim_cfg}} + # optim_cfg = {optim_name: {scope: xxx, **optim_cfg}} # step1 build lr - optim_name = list(optim_item.keys())[0] # get optim_name1 - optim_scope = optim_item[optim_name].pop('scope') # get scope + optim_name = list(optim_item.keys())[0] # get optim_name + optim_scope = optim_item[optim_name].pop('scope') # get optim_scope optim_cfg = optim_item[optim_name] # get optim_cfg lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch) @@ -78,7 +78,8 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): reg_name = reg_config.pop('name') + 'Decay' reg = getattr(paddle.regularizer, reg_name)(**reg_config) optim_cfg["weight_decay"] = reg - logger.debug("build regularizer ({}) success..".format(reg)) + logger.debug("build regularizer ({}) for scope ({}) success..". + format(reg, optim_scope)) # step3 build optimizer if 'clip_norm' in optim_cfg: clip_norm = optim_cfg.pop('clip_norm') @@ -87,11 +88,16 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): grad_clip = None optim_model = [] for i in range(len(model_list)): - class_name = model_list[i].__class__.__name__ - if class_name == optim_scope: + if len(model_list[i].parameters()) == 0: + continue + if optim_scope == "all": optim_model.append(model_list[i]) - assert len(optim_model) == 1 and len(optim_model[0].parameters()) > 0, \ - f"Invalid optim model for optim scope({optim_scope}), number of optim_model={len(optim_model)}, and number of optim_model's params={len(optim_model[0].parameters())}" + else: + for m in model_list[i].sublayers(True): + if m.__class__.__name__ == optim_scope: + optim_model.append(model_list[i]) + assert len(optim_model) == 1, \ + "Invalid optim model for optim scope({}), number of optim_model={}".format(optim_scope, len(optim_model)) optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model)