diff --git a/deploy/configs/inference_cls.yaml b/deploy/configs/inference_cls.yaml index 2868dfcc0f055469103f1ea11d16a7d709ccad7d..7954880429cf52fcc905183ccf5976964d5996b5 100644 --- a/deploy/configs/inference_cls.yaml +++ b/deploy/configs/inference_cls.yaml @@ -22,6 +22,7 @@ PreProcess: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' + channel_num: 3 - ToCHWImage: PostProcess: main_indicator: Topk diff --git a/deploy/configs/inference_cls_ch4.yaml b/deploy/configs/inference_cls_ch4.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e8916ec3142eda6ee885fcf9a618f24693a2f1ae --- /dev/null +++ b/deploy/configs/inference_cls_ch4.yaml @@ -0,0 +1,33 @@ +Global: + infer_imgs: "./images/ILSVRC2012_val_00000010.jpeg" + inference_model_dir: "./models" + batch_size: 1 + use_gpu: True + enable_mkldnn: True + cpu_num_threads: 10 + enable_benchmark: True + use_fp16: False + ir_optim: True + use_tensorrt: False + gpu_mem: 8000 + enable_profile: False +PreProcess: + transform_ops: + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 0.00392157 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + channel_num: 4 + - ToCHWImage: +PostProcess: + main_indicator: Topk + Topk: + topk: 5 + class_id_map_file: "../ppcls/utils/imagenet1k_label_list.txt" + SavePreLabel: + save_dir: ./pre_label/ diff --git a/ppcls/configs/ImageNet/ResNet/ResNet50_fp16.yaml b/ppcls/configs/ImageNet/ResNet/ResNet50_fp16.yaml index 62d7bfd2368a812f106373a1ff1e5538369a0963..e58539b466f3b59d637f4f6a8e7188f6a9b8b876 100644 --- a/ppcls/configs/ImageNet/ResNet/ResNet50_fp16.yaml +++ b/ppcls/configs/ImageNet/ResNet/ResNet50_fp16.yaml @@ -28,6 +28,7 @@ Arch: name: ResNet50 class_num: 1000 input_image_channel: *image_channel + data_format: "NHWC" # loss function config for traing/eval process Loss: @@ -41,7 +42,7 @@ Loss: Optimizer: name: Momentum momentum: 0.9 - multi_precision: False # *use_pure_fp16 + multi_precision: *use_pure_fp16 lr: name: Piecewise learning_rate: 0.1