diff --git a/ppcls/modeling/architectures/resnet.py b/ppcls/modeling/architectures/resnet.py index f6227053c74eb1672634fc5cfcbb2e12f6a3cfc1..a1b1086b3b80641efa24f217b0819376199ce59e 100644 --- a/ppcls/modeling/architectures/resnet.py +++ b/ppcls/modeling/architectures/resnet.py @@ -19,7 +19,6 @@ from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr -# from paddle.fluid.param_attr import ParamAttr import paddle.nn as nn from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, Dropout diff --git a/tools/program.py b/tools/program.py index ba9945aa132f8672b55ad3147c1fd11b2fc9cd08..5ab7f49266ab6a963506bcf6868cca64fbc4bfe2 100644 --- a/tools/program.py +++ b/tools/program.py @@ -18,11 +18,12 @@ from __future__ import print_function import os import time - from collections import OrderedDict import paddle -import paddle.fluid as fluid +from paddle import to_tensor +import paddle.nn as nn +import paddle.nn.functional as F from ppcls.optimizer import LearningRateBuilder from ppcls.optimizer import OptimizerBuilder @@ -34,8 +35,6 @@ from ppcls.modeling.loss import GoogLeNetLoss from ppcls.utils.misc import AverageMeter from ppcls.utils import logger -from paddle.fluid.dygraph.base import to_variable - def create_dataloader(): """ @@ -45,11 +44,11 @@ def create_dataloader(): feeds(dict): dict of model input variables Returns: - dataloader(fluid dataloader): + dataloader(paddle dataloader): """ trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) capacity = 64 if trainer_num == 1 else 8 - dataloader = fluid.io.DataLoader.from_generator( + dataloader = paddle.io.DataLoader.from_generator( capacity=capacity, use_double_buffer=True, iterable=True) return dataloader @@ -149,15 +148,15 @@ def create_metric(out, # just need student label to get metrics if use_distillation: out = out[1] - softmax_out = fluid.layers.softmax(out, use_cudnn=False) + softmax_out = F.softmax(out) fetchs = OrderedDict() # set top1 to fetchs - top1 = fluid.layers.accuracy(softmax_out, label=label, k=1) + top1 = paddle.metric.accuracy(softmax_out, label=label, k=1) fetchs['top1'] = top1 # set topk to fetchs k = min(topk, classes_num) - topk = fluid.layers.accuracy(softmax_out, label=label, k=k) + topk = paddle.metric.accuracy(softmax_out, label=label, k=k) topk_name = 'top{}'.format(k) fetchs[topk_name] = topk @@ -244,12 +243,12 @@ def create_optimizer(config, parameter_list=None): def create_feeds(batch, use_mix): image = batch[0] if use_mix: - y_a = to_variable(batch[1].numpy().astype("int64").reshape(-1, 1)) - y_b = to_variable(batch[2].numpy().astype("int64").reshape(-1, 1)) - lam = to_variable(batch[3].numpy().astype("float32").reshape(-1, 1)) + y_a = to_tensor(batch[1].numpy().astype("int64").reshape(-1, 1)) + y_b = to_tensor(batch[2].numpy().astype("int64").reshape(-1, 1)) + lam = to_tensor(batch[3].numpy().astype("float32").reshape(-1, 1)) feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam} else: - label = to_variable(batch[1].numpy().astype('int64').reshape(-1, 1)) + label = to_tensor(batch[1].numpy().astype('int64').reshape(-1, 1)) feeds = {"image": image, "label": label} return feeds @@ -259,7 +258,7 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'): Feed data to the model and fetch the measures and loss Args: - dataloader(fluid dataloader): + dataloader(paddle dataloader): exe(): program(): fetchs(dict): dict of measures and the loss