提交 74de24f6 编写于 作者: weixin_46524038's avatar weixin_46524038 提交者: cuicheng01

add swinv2

上级 a5a3b0f5
......@@ -883,8 +883,7 @@ def SwinTransformerV2_base_patch4_window8_256(pretrained=False,
pretrained,
model,
MODEL_URLS["SwinTransformerV2_base_patch4_window8_256"],
use_ssld=use_ssld,
use_imagenet22k_pretrained=use_imagenet22k_pretrained)
use_ssld=use_ssld)
return model
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
name: SwinTransformerV2_base_patch4_window12to16_256
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 256
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.8
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 292
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 292
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
===========================train_params===========================
model_name:SwinTransformerV2_base_patch4_window12to16_256
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/SwinTransformerV2/SwinTransformerV2_base_patch4_window12to16_256.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformerV2/SwinTransformerV2_base_patch4_window12to16_256.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/SwinTransformerV2/SwinTransformerV2_base_patch4_window12to16_256.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformerV2_base_patch4_window12to16_256_22kto1k_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:104|128
fp_items:fp32|fp16
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,256,256]}]
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册