diff --git a/deploy/configs/cls_demo/person/inference_person_cls.yaml b/deploy/configs/cls_demo/person/inference_person_cls.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e4cd58f6ed3a5f48a4fc87e373a8d3cce8a018bc
--- /dev/null
+++ b/deploy/configs/cls_demo/person/inference_person_cls.yaml
@@ -0,0 +1,35 @@
+Global:
+ infer_imgs: "./images/cls_demo/person/objects365_02035329.jpg"
+ inference_model_dir: "./models/PPLCNet_x1_0_person/"
+ batch_size: 1
+ use_gpu: True
+ enable_mkldnn: True
+ cpu_num_threads: 10
+ enable_benchmark: True
+ use_fp16: False
+ ir_optim: True
+ use_tensorrt: False
+ gpu_mem: 8000
+ enable_profile: False
+
+PreProcess:
+ transform_ops:
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 0.00392157
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ channel_num: 3
+ - ToCHWImage:
+
+PostProcess:
+ main_indicator: Topk
+ Topk:
+ topk: 5
+ class_id_map_file: "../ppcls/utils/cls_demo//person_label_list.txt"
+ SavePreLabel:
+ save_dir: ./pre_label/
diff --git a/deploy/images/cls_demo/person/objects365_01780782.jpg b/deploy/images/cls_demo/person/objects365_01780782.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a0dd0df59ae5a6386a04a8e0cf9cdbc529139c16
Binary files /dev/null and b/deploy/images/cls_demo/person/objects365_01780782.jpg differ
diff --git a/deploy/images/cls_demo/person/objects365_02035329.jpg b/deploy/images/cls_demo/person/objects365_02035329.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..16d7f2d08cd87bda1b67d21655f00f94a0c6e4e4
Binary files /dev/null and b/deploy/images/cls_demo/person/objects365_02035329.jpg differ
diff --git a/docs/zh_CN/quick_start/cls_demo/quick_start_cls_demo.md b/docs/zh_CN/quick_start/cls_demo/quick_start_cls_demo.md
new file mode 100644
index 0000000000000000000000000000000000000000..d2b0959c552677c5018a0afff75c08c0576e7f59
--- /dev/null
+++ b/docs/zh_CN/quick_start/cls_demo/quick_start_cls_demo.md
@@ -0,0 +1,224 @@
+# PaddleClas构建有人/无人分类案例
+
+此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、KL-JS-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
+
+请事先参考[安装指南](../installation/install_paddleclas.md)配置运行环境和克隆 PaddleClas 代码。
+
+------
+
+## 目录
+
+- [1. 数据准备](#1)
+- [2. 模型训练](#2)
+ - [2.1 基于搜索好的超参数训练](#2.1)
+ - [2.1.1 基于搜索好的超参数训练轻量级模型](#2.1.1)
+ - [2.1.2 基于搜索好的超参数训练教师模型](#2.1.2)
+ - [2.1.3 基于搜索好的超参数进行蒸馏训练](#2.1.3)
+ - [2.2 超参数搜索训练](2.2)
+- [3. 模型评估与推理](#3)
+ - [3.1 模型评估](#3.1)
+ - [3.2 模型预测](#3.2)
+ - [3.3 使用 inference 模型进行模型推理](#3.3)
+ - [3.3.1 导出 inference 模型](#3.3.1)
+ - [3.3.2 模型推理预测](#3.3.2)
+
+
+
+## 1. 数据准备
+
+进入 PaddleClas 目录。
+
+```
+cd path_to_PaddleClas
+```
+
+进入 `dataset/` 目录,下载并解压有人/无人场景的数据。
+
+```shell
+cd dataset
+wget https://paddleclas.bj.bcebos.com/data/cls_demo/person.tar
+tar -xf person.tar
+cd ../
+```
+
+执行上述命令后,`dataset/`下存在`person`目录,该目录中具有以下数据:
+
+```
+
+├── train
+│ ├── 000000000009.jpg
+│ ├── 000000000025.jpg
+...
+├── val
+│ ├── objects365_01780637.jpg
+│ ├── objects365_01780640.jpg
+...
+├── ImageNet_val
+│ ├── ILSVRC2012_val_00000001.JPEG
+│ ├── ILSVRC2012_val_00000002.JPEG
+...
+├── train_list.txt
+├── train_list.txt.debug
+├── train_list_for_distill.txt
+├── val_list.txt
+└── val_list.txt.debug
+```
+
+其中`train/`和`val/`分别为训练集和验证集。`train_list.txt`和`val_list.txt`分别为训练集和验证集的标签文件,`train_list.txt.debug`和`val_list.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`train_list.txt`和`val_list.txt`的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/`是ImageNet的验证集,该集合和`train`集合的混合数据用于本案例的`KL-JS-UGI知识蒸馏策略`,对应的训练标签文件为`train_list_for_distill.txt`。
+
+* **注意**:
+
+* 本案例中所使用的所有数据集均为开源数据,`train`集合为[MS-COCO数据的](https://cocodataset.org/#overview)训练集的子集,`val`集合为[Object365数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`为[ImageNet数据](https://www.image-net.org/)的验证集。
+
+
+
+## 2. 模型训练
+
+
+
+### 2.1 基于搜索好的超参数训练
+
+
+
+#### 2.1.1 基于搜索好的超参数训练轻量级模型
+
+在`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml`中提供了基于该场景中已经搜索好的超参数,可以通过如下脚本启动训练:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
+```
+
+验证集的最佳 metric 在0.94-0.95之间(数据集较小,容易造成波动)。
+
+
+
+#### 2.1.2 基于搜索好的超参数训练教师模型
+
+复用`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml`中的超参数,训练教师模型,训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Arch.name=ResNet101_vd
+```
+
+验证集的最佳 metric 为0.97-0.98之间,当前教师模型最好的权重保存在`output/ResNet101_vd/best_model.pdparams`。
+
+
+
+#### 2.1.3 基于搜索好的超参数进行蒸馏训练
+
+配置文件`ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml`提供了`KL-JS-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c .ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml \
+ -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
+```
+
+
+
+### 2.2 超参数搜索训练
+
+2.1 小节提供了在已经搜索并得到的超参数上进行了训练,此部分内容提供了搜索的过程,此过程是为了得到更好的训练超参数。
+
+* 搜索运行脚本如下:
+
+```shell
+python tools/search_strategy.py -c ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
+```
+
+* **注意**:
+
+* 此过程基于当前数据集在 V100 4 卡上大概需要耗时 6 小时,如果缺少机器资源,希望体验搜索过程,可以将`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml`中的`train_list.txt`和`val_list.txt`分别替换为`train_list.txt.debug`和`val_list.txt.debug`。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。
+
+
+
+## 3. 模型评估与推理
+
+
+
+
+### 3.1 模型评估
+
+训练好模型之后,可以通过以下命令实现对模型精度的评估。
+
+```bash
+python3 tools/eval.py \
+ -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
+```
+
+
+
+### 3.2 模型预测
+
+模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
+
+```python
+python3 tools/infer.py \
+ -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Infer.infer_imgs=./dataset/person/val/objects365_01780637.jpg \
+ -o Global.pretrained_model=output/PPLCNet_x1_0/best_model
+```
+
+
+
+### 3.3 使用 inference 模型进行模型推理
+
+
+### 3.3.1 导出 inference 模型
+
+通过导出 inference 模型,PaddlePaddle 支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理:
+首先,对训练好的模型进行转换:
+
+```bash
+python3 tools/export_model.py \
+ -c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
+ -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person
+```
+
+
+* 默认会在 `deploy/models/PPLCNet_x1_0_person` 文件夹下生成 `inference.pdiparams`、`inference.pdmodel` 和 `inference.pdiparams.info` 文件。其中`inference.pdiparams`、`inference.pdmodel` 分别存储了模型的权重和结构,用于推理预测。
+
+
+
+### 3.3.2 模型推理预测
+
+进入 deploy 目录下:
+
+```bash
+cd deploy
+```
+执行下面的命令进行预测:
+```bash
+python python/predict_cls.py -c configs/cls_demo/person/inference_person_cls.yaml
+```
+
+输出结果为:
+```
+objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name(s): ['someone', 'nobody']
+```
+
+如果希望预测整个文件夹的图片,可以通过`-o `来重写配置文件中的`Global.infer_imgs`字段,如预测`./images/cls_demo/person/`下所有的图片的命令为:
+
+```bash
+python python/predict_cls.py -c configs/cls_demo/person/inference_person_cls.yaml -o Global.infer_imgs=./images/cls_demo/person/
+```
+输出结果为:
+
+```
+objects365_01780782.jpg: class id(s): [0, 1], score(s): [1.00, 0.00], label_name(s): ['nobody', 'someone']
+objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name(s): ['someone', 'nobody']
+```
diff --git a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml b/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
index 54e1a313c69afeebb2ec69a8b0257f6554a4ea61..a9c3db29682933f19cf93ef000d5b6ec83007aa7 100644
--- a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
+++ b/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
@@ -33,11 +33,14 @@ Arch:
- Teacher:
name: ResNet101_vd
class_num: *class_num
+ use_sync_bn: True
- Student:
name: PPLCNet_x1_0
class_num: *class_num
pretrained: True
use_ssld: True
+ use_sync_bn: True
+ lr_mult_list: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
infer_model_name: "Student"
@@ -77,21 +80,21 @@ DataLoader:
to_rgb: True
channel_first: False
- RandCropImage:
- size: 224
+ size: 192
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
prob: 0.0
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
- img_size: 224
+ img_size: 192
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
- EPSILON: 0.0
+ EPSILON: 0.1
sl: 0.02
sh: 1.0/3.0
r1: 0.3
diff --git a/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation_search.yaml b/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation_search.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..54e1a313c69afeebb2ec69a8b0257f6554a4ea61
--- /dev/null
+++ b/ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation_search.yaml
@@ -0,0 +1,167 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ start_eval_epoch: 10
+ eval_interval: 1
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# model architecture
+Arch:
+ name: "DistillationModel"
+ class_num: &class_num 2
+ # if not null, its lengths should be same as models
+ pretrained_list:
+ # if not null, its lengths should be same as models
+ freeze_params_list:
+ - True
+ - False
+ use_sync_bn: True
+ models:
+ - Teacher:
+ name: ResNet101_vd
+ class_num: *class_num
+ - Student:
+ name: PPLCNet_x1_0
+ class_num: *class_num
+ pretrained: True
+ use_ssld: True
+
+ infer_model_name: "Student"
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - DistillationDMLLoss:
+ weight: 1.0
+ model_name_pairs:
+ - ["Student", "Teacher"]
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list_for_distill.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 16
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+
+Metric:
+ Train:
+ - DistillationTopkAcc:
+ model_key: "Student"
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml b/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
index 3c9bfb5dbb10fdea9c1209ecaace08c2fb59ac6a..97ae1ba73b0c499a5e2b80f5d32c62964b061a40 100644
--- a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
+++ b/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
@@ -26,6 +26,7 @@ Arch:
pretrained: True
use_ssld: True
use_sync_bn: True
+ lr_mult_list: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
# loss function config for traing/eval process
Loss:
@@ -61,21 +62,21 @@ DataLoader:
to_rgb: True
channel_first: False
- RandCropImage:
- size: 224
+ size: 192
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
prob: 0.0
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
- img_size: 224
+ img_size: 192
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
- EPSILON: 0.0
+ EPSILON: 0.1
sl: 0.02
sh: 1.0/3.0
r1: 0.3
diff --git a/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml b/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3c9bfb5dbb10fdea9c1209ecaace08c2fb59ac6a
--- /dev/null
+++ b/ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
@@ -0,0 +1,150 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 10
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+
+# model architecture
+Arch:
+ name: PPLCNet_x1_0
+ class_num: 2
+ pretrained: True
+ use_ssld: True
+ use_sync_bn: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/utils/cls_demo/person_label_list.txt b/ppcls/utils/cls_demo/person_label_list.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8eea2b6dc2433abf303a0ea508021698559b749b
--- /dev/null
+++ b/ppcls/utils/cls_demo/person_label_list.txt
@@ -0,0 +1,2 @@
+0 nobody
+1 someone