未验证 提交 6d2de979 编写于 作者: G gaotingquan

fix

上级 1a9d6229
......@@ -27,10 +27,10 @@ Modules:
- name: PaddlePredictor
type: predictor
inference_model_dir: "./MobileNetV2_infer"
input_names:
inputs: image
output_names:
save_infer_model/scale_0.tmp_1: logits
to_model_names:
image: inputs
from_model_names:
logits: 0
- name: TopK
type: postprocessor
k: 10
......
......@@ -26,9 +26,9 @@ Modules:
- name: PaddlePredictor
type: predictor
inference_model_dir: models/product_ResNet50_vd_aliproduct_v1.0_infer
input_names:
x: image
output_names:
save_infer_model/scale_0.tmp_1: features
to_model_names:
image: x
from_model_names:
features: 0
- name: FeatureNormalizer
type: postprocessor
\ No newline at end of file
......@@ -20,14 +20,20 @@ def main():
input_data = {"input_image": img}
data = engine.process(input_data)
# for det, cls
# print(data)
# for cls
if "classification_res" in data:
print(data["classification_res"])
# for det
elif "detection_res" in data:
print(data["detection_res"])
# for rec
# features = data["pred"]["features"]
# print(features)
# print(features.shape)
# print(type(features))
elif "features" in data["pred"]:
features = data["pred"]["features"]
print(features)
print(features.shape)
print(type(features))
else:
print("ERROR")
if __name__ == '__main__':
......
# from .postprocessor import build_postprocessor
# from .preprocessor import build_preprocessor
# from .predictor import build_predictor
import importlib
from processor.algo_mod import preprocessor
from processor.algo_mod import predictor
from processor.algo_mod import postprocessor
from processor.algo_mod import searcher
from .postprocessor import build_postprocessor
from .preprocessor import build_preprocessor
from .predictor import build_predictor
from .searcher import build_searcher
from ..base_processor import BaseProcessor
......@@ -17,20 +11,18 @@ class AlgoMod(BaseProcessor):
self.processors = []
for processor_config in config["processors"]:
processor_type = processor_config.get("type")
processor_name = processor_config.get("name")
_mod = importlib.import_module(__name__)
processor = getattr(
getattr(_mod, processor_type),
processor_name)(processor_config)
# if processor_type == "preprocessor":
# processor = build_preprocessor(processor_config)
# elif processor_type == "predictor":
# processor = build_predictor(processor_config)
# elif processor_type == "postprocessor":
# processor = build_postprocessor(processor_config)
# else:
# raise NotImplemented("processor type {} unknown.".format(processor_type))
if processor_type == "preprocessor":
processor = build_preprocessor(processor_config)
elif processor_type == "predictor":
processor = build_predictor(processor_config)
elif processor_type == "postprocessor":
processor = build_postprocessor(processor_config)
elif processor_type == "searcher":
processor = build_searcher(processor_config)
else:
raise NotImplemented("processor type {} unknown.".format(
processor_type))
self.processors.append(processor)
def process(self, input_data):
......
......@@ -4,7 +4,8 @@ from .classification import TopK
from .det import DetPostPro
from .rec import FeatureNormalizer
# def build_postprocessor(config):
# processor_mod = importlib.import_module(__name__)
# processor_name = config.get("name")
# return getattr(processor_mod, processor_name)(config)
def build_postprocessor(config):
processor_mod = importlib.import_module(__name__)
processor_name = config.get("name")
return getattr(processor_mod, processor_name)(config)
......@@ -2,6 +2,7 @@ import os
import numpy as np
from utils import logger
from ...base_processor import BaseProcessor
......@@ -20,8 +21,8 @@ class TopK(BaseProcessor):
return None
if not os.path.exists(class_id_map_file):
print(
"Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
logger.warning(
"[Classification] If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
)
return None
......@@ -33,17 +34,13 @@ class TopK(BaseProcessor):
partition = line.split("\n")[0].partition(" ")
class_id_map[int(partition[0])] = str(partition[-1])
except Exception as ex:
print(ex)
logger.warning(f"[Classification] {ex}")
class_id_map = None
return class_id_map
def process(self, data):
x = data["pred"]["logits"]
# TODO(gaotingquan): support file_name
# if file_names is not None:
# assert x.shape[0] == len(file_names)
y = []
for idx, probs in enumerate(x):
# TODO(gaotingquan): only support bs==1 when 'connector' is not implemented.
probs = data["pred"]["logits"][0]
index = probs.argsort(axis=0)[-self.topk:][::-1].astype(
"int32") if not self.multilabel else np.where(
probs >= 0.5)[0].astype("int32")
......@@ -60,9 +57,8 @@ class TopK(BaseProcessor):
"scores": np.around(
score_list, decimals=5).tolist(),
}
# if file_names is not None:
# result["file_name"] = file_names[idx]
if label_name_list is not None:
result["label_names"] = label_name_list
y.append(result)
return y
data["classification_res"] = result
return data
......@@ -11,27 +11,34 @@ class DetPostPro(BaseProcessor):
self.label_list = config["label_list"]
self.max_det_results = config["max_det_results"]
def process(self, input_data):
pred = input_data["pred"]
def process(self, data):
pred = data["pred"]
np_boxes = pred[list(pred.keys())[0]]
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
logger.warning('[Detector] No object detected.')
np_boxes = np.array([])
keep_indexes = np_boxes[:, 1].argsort()[::-1][:self.max_det_results]
results = []
for idx in keep_indexes:
single_res = np_boxes[idx]
if reduce(lambda x, y: x * y, np_boxes.shape) >= 6:
keep_indexes = np_boxes[:, 1].argsort()[::-1][:
self.max_det_results]
# TODO(gaotingquan): only support bs==1
single_res = np_boxes[0]
class_id = int(single_res[0])
score = single_res[1]
bbox = single_res[2:]
if score < self.threshold:
continue
if score > self.threshold:
label_name = self.label_list[class_id]
results.append({
results = {
"class_id": class_id,
"score": score,
"bbox": bbox,
"label_name": label_name,
})
return results
}
data["detection_res"] = results
return data
logger.warning('[Detector] No object detected.')
results = {
"class_id": None,
"score": None,
"bbox": None,
"label_name": None,
}
data["detection_res"] = results
return data
......@@ -3,7 +3,8 @@ import importlib
from processor.algo_mod.predictor.paddle_predictor import PaddlePredictor
from processor.algo_mod.predictor.onnx_predictor import ONNXPredictor
# def build_predictor(config):
# processor_mod = importlib.import_module(__name__)
# processor_name = config.get("name")
# return getattr(processor_mod, processor_name)(config)
def build_predictor(config):
processor_mod = importlib.import_module(__name__)
processor_name = config.get("name")
return getattr(processor_mod, processor_name)(config)
......@@ -48,30 +48,40 @@ class PaddlePredictor(BaseProcessor):
paddle_config.switch_use_feed_fetch_ops(False)
self.predictor = create_predictor(paddle_config)
if "input_names" in config and config["input_names"]:
self.input_name_mapping = config["input_names"]
if "to_model_names" in config and config["to_model_names"]:
self.input_name_map = {
v: k
for k, v in config["to_model_names"].items()
}
else:
self.input_name_mapping = []
if "output_names" in config and config["output_names"]:
self.output_name_mapping = config["output_names"]
self.input_name_map = {}
if "from_model_names" in config and config["from_model_names"]:
self.output_name_map = config["from_model_names"]
else:
self.output_name_mapping = []
self.output_name_map = {}
def process(self, data):
input_names = self.predictor.get_input_names()
for input_name in input_names:
input_tensor = self.predictor.get_input_handle(input_name)
name = self.input_name_mapping[
input_name] if input_name in self.input_name_mapping else input_name
name = self.input_name_map[
input_name] if input_name in self.input_name_map else input_name
input_tensor.copy_from_cpu(data[name])
self.predictor.run()
output_data = {}
model_output = []
output_names = self.predictor.get_output_names()
for output_name in output_names:
output = self.predictor.get_output_handle(output_name)
name = self.output_name_mapping[
output_name] if output_name in self.output_name_mapping else output_name
output_data[name] = output.copy_to_cpu()
model_output.append((output_name, output.copy_to_cpu()))
if self.output_name_map:
output_data = {}
for name in self.output_name_map:
idx = self.output_name_map[name]
output_data[name] = model_output[idx][1]
else:
output_data = dict(model_output)
data["pred"] = output_data
return data
......@@ -2,7 +2,8 @@ import importlib
from processor.algo_mod.preprocessor.image_processor import ImageProcessor
# def build_preprocessor(config):
# processor_mod = importlib.import_module(__name__)
# processor_name = config.get("name")
# return getattr(processor_mod, processor_name)(config)
def build_preprocessor(config):
processor_mod = importlib.import_module(__name__)
processor_name = config.get("name")
return getattr(processor_mod, processor_name)(config)
......@@ -4,11 +4,15 @@ import pickle
import faiss
def build_searcher(config):
return Searcher(config)
class Searcher:
def __init__(self, config):
super().__init__()
self.Searcher = faiss.read_index(
self.faiss_searcher = faiss.read_index(
os.path.join(config["index_dir"], "vector.index"))
with open(os.path.join(config["index_dir"], "id_map.pkl"), "rb") as fd:
......@@ -18,6 +22,11 @@ class Searcher:
def process(self, data):
features = data["features"]
scores, docs = self.Searcher.search(features, self.return_k)
data["search_res"] = (scores, docs)
scores, docs = self.faiss_searcher.search(features, self.return_k)
preds = {}
preds["rec_docs"] = self.id_map[docs[0][0]].split()[1]
preds["rec_scores"] = scores[0][0]
data["search_res"] = preds
return data
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册