diff --git a/ppcls/configs/ImageNet/CSPNet/CSPDarkNet53.yaml b/ppcls/configs/ImageNet/CSPNet/CSPDarkNet53.yaml index cce4e3e591a1fad7ae8e78b1c523309ba7cec298..e512e5b32c79fb97909287d0d4f33b8d612dfc09 100644 --- a/ppcls/configs/ImageNet/CSPNet/CSPDarkNet53.yaml +++ b/ppcls/configs/ImageNet/CSPNet/CSPDarkNet53.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 256, 256] save_inference_dir: ./inference # training model under @to_static to_static: False diff --git a/ppcls/configs/ImageNet/DarkNet/DarkNet53.yaml b/ppcls/configs/ImageNet/DarkNet/DarkNet53.yaml index 1a55e75d4661b1759dc46ac2203ad5f1e2ceb2fb..ba1478ffab6e3eca4c56af1cf59f3195f793b0f9 100644 --- a/ppcls/configs/ImageNet/DarkNet/DarkNet53.yaml +++ b/ppcls/configs/ImageNet/DarkNet/DarkNet53.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 256, 256] save_inference_dir: ./inference # model architecture @@ -53,7 +53,7 @@ DataLoader: to_rgb: True channel_first: False - RandCropImage: - size: 224 + size: 256 - RandFlipImage: flip_code: 1 - NormalizeImage: @@ -84,9 +84,9 @@ DataLoader: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 292 - CropImage: - size: 224 + size: 256 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] @@ -109,9 +109,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 292 - CropImage: - size: 224 + size: 256 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB1.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB1.yaml index 502be5ead0ead05881dc0d1051d4aaee5023713f..92ec91b7ee941f6d61332100c9d9d49c034f6617 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB1.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB1.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 240, 240] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 272 - CropImage: - size: 224 + size: 240 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB2.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB2.yaml index 230d5604c25b0e87638d2b4c04c780dfd37f189b..16f2e2f11c918baef824b41d055cea387b855a44 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB2.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB2.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 260, 260] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 292 - CropImage: - size: 224 + size: 260 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB3.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB3.yaml index fcd8c013ff283e685b39a350e8b53b409be7d0d7..0847256f693c31590e502a9ecfe32b7477d0320f 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB3.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB3.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 300, 300] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 332 - CropImage: - size: 224 + size: 300 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB4.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB4.yaml index 1f97c7106a5898c14a64f0a735ec2de1f48efe69..c5396ff2bd92540eee6f857cdb1c06e7258eb756 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB4.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB4.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 380, 380] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 412 - CropImage: - size: 224 + size: 380 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB5.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB5.yaml index 94656dc8312ccbede247c63466ec7f7c9fb6ab6c..286971d4452325b13fb92d470e4844799c7ba918 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB5.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB5.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 456, 456] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 448 - CropImage: - size: 224 + size: 456 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB6.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB6.yaml index 8da4f005f0ac3ef6024aae6fe82070fb381bab64..edaab55460eb5f6e05abecdefe57c6bd5d13c7ca 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB6.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB6.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 528, 528] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 560 - CropImage: - size: 224 + size: 528 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB7.yaml b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB7.yaml index 2470cff1898db4cd1416bb35f1bed7a16fe4f097..1ced43d1d3bf5c688f0362615c683633d3dc74d1 100644 --- a/ppcls/configs/ImageNet/EfficientNet/EfficientNetB7.yaml +++ b/ppcls/configs/ImageNet/EfficientNet/EfficientNetB7.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 600, 600] save_inference_dir: ./inference # model architecture @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 632 - CropImage: - size: 224 + size: 600 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] diff --git a/ppcls/configs/ImageNet/ResNeSt/ResNeSt101.yaml b/ppcls/configs/ImageNet/ResNeSt/ResNeSt101.yaml index 7b3bc2bdb6fb4c6d32a1d95d972407f9cf58f4c7..724b56df430181f62cc24f53266e708a8812a8bc 100644 --- a/ppcls/configs/ImageNet/ResNeSt/ResNeSt101.yaml +++ b/ppcls/configs/ImageNet/ResNeSt/ResNeSt101.yaml @@ -11,7 +11,7 @@ Global: print_batch_step: 10 use_visualdl: False # used for static mode and model export - image_shape: [3, 224, 224] + image_shape: [3, 256, 256] save_inference_dir: ./inference # model architecture @@ -53,7 +53,7 @@ DataLoader: to_rgb: True channel_first: False - RandCropImage: - size: 224 + size: 256 - RandFlipImage: flip_code: 1 - AutoAugment: @@ -85,9 +85,9 @@ DataLoader: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 288 - CropImage: - size: 224 + size: 256 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] @@ -110,9 +110,9 @@ Infer: to_rgb: True channel_first: False - ResizeImage: - resize_short: 256 + resize_short: 288 - CropImage: - size: 224 + size: 256 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406]