提交 64b48cb5 编写于 作者: W weishengyu

update column

上级 1376038f
...@@ -25,11 +25,11 @@ PP-ShiTu demo images ...@@ -25,11 +25,11 @@ PP-ShiTu demo images
- 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormer](https://arxiv.org/pdf/2204.02557.pdf). - 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormer](https://arxiv.org/pdf/2204.02557.pdf).
- 2021.09.17 Add PP-LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs. - 2021.09.17 Add PP-LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs.
For the introduction of PP-LCNet, please refer to [paper](https://arxiv.org/pdf/2109.15099.pdf) or [PP-LCNet model introduction](docs/en/models/PP-LCNet_en.md). The metrics and pretrained model are available [here](docs/en/ImageNet_models_en.md). For the introduction of PP-LCNet, please refer to [paper](https://arxiv.org/pdf/2109.15099.pdf) or [PP-LCNet model introduction](docs/en/models/PP-LCNet_en.md). The metrics and pretrained model are available [here](docs/en/algorithm_introduction/ImageNet_models_en.md).
- 2021.06.29 Add Swin-transformer series model,Highest top1 acc on ImageNet1k dataset reaches 87.2%, training, evaluation and inference are all supported. Pretrained models can be downloaded [here](docs/en/models/models_intro_en.md). - 2021.06.29 Add [Swin-transformer](docs/en/models/SwinTransformer_en.md)) series model,Highest top1 acc on ImageNet1k dataset reaches 87.2%, training, evaluation and inference are all supported. Pretrained models can be downloaded [here](docs/en/algorithm_introduction/ImageNet_models_en.md#16).
- 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper. - 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
- [more](./docs/en/update_history_en.md) - [more](./docs/en/others/update_history_en.md)
## Features ## Features
...@@ -50,41 +50,35 @@ Based on th algorithms above, PaddleClas release PP-ShiTu image recognition syst ...@@ -50,41 +50,35 @@ Based on th algorithms above, PaddleClas release PP-ShiTu image recognition syst
</div> </div>
## Quick Start ## Quick Start
Quick experience of PP-ShiTu image recognition system:[Link](./docs/en/tutorials/quick_start_recognition_en.md) Quick experience of PP-ShiTu image recognition system:[Link](./docs/en/quick_start/quick_start_recognition_en.md)
Quick experience of **P**ractical **U**ltra **L**ight-weight image **C**lassification models:[Link](docs/en/PULC/PULC_quickstart.md) Quick experience of **P**ractical **U**ltra **L**ight-weight image **C**lassification models:[Link](docs/en/PULC/PULC_quickstart_en.md)
## Tutorials ## Tutorials
- [Quick Installation](./docs/en/tutorials/install_en.md) - [Install Paddle](./docs/en/installation/install_paddle_en.md)
- [Install PaddleClas Environment](./docs/en/installation/install_paddleclas_en.md)
- [Practical Ultra Light-weight image Classification solutions](./docs/en/PULC/PULC_quickstart_en.md) - [Practical Ultra Light-weight image Classification solutions](./docs/en/PULC/PULC_quickstart_en.md)
- [Quick Start of Recognition](./docs/en/tutorials/quick_start_recognition_en.md) - [Quick Start of Recognition](./docs/en/quick_start/quick_start_recognition_en.md)
- [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems) - [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems)
- [Demo images](#Demo_images) - [Image Recognition Demo images](#Rec_Demo_images)
- [PULC demo images](#Clas_Demo_images)
- Algorithms Introduction - Algorithms Introduction
- [Backbone Network and Pre-trained Model Library](./docs/en/ImageNet_models_en.md) - [Backbone Network and Pre-trained Model Library](./docs/en/algorithm_introduction/ImageNet_models_en.md)
- [Mainbody Detection](./docs/en/application/mainbody_detection_en.md) - [Mainbody Detection](./docs/en/image_recognition_pipeline/mainbody_detection_en.md)
- [Image Classification](./docs/en/tutorials/image_classification_en.md) - [Feature Learning](./docs/en/image_recognition_pipeline/feature_extraction_en.md)
- [Feature Learning](./docs/en/application/feature_learning_en.md)
- [Product Recognition](./docs/en/application/product_recognition_en.md)
- [Vehicle Recognition](./docs/en/application/vehicle_recognition_en.md)
- [Logo Recognition](./docs/en/application/logo_recognition_en.md)
- [Animation Character Recognition](./docs/en/application/cartoon_character_recognition_en.md)
- [Vector Search](./deploy/vector_search/README.md) - [Vector Search](./deploy/vector_search/README.md)
- Models Training/Evaluation
- [Image Classification](./docs/en/tutorials/getting_started_en.md)
- [Feature Learning](./docs/en/tutorials/getting_started_retrieval_en.md)
- Inference Model Prediction - Inference Model Prediction
- [Python Inference](./docs/en/inference.md) - [Python Inference](./docs/en/inference_deployment/python_deploy_en.md)
- [C++ Classfication Inference](./deploy/cpp/readme_en.md)[C++ PP-ShiTu Inference](deploy/cpp_shitu/readme_en.md) - [C++ Classfication Inference](./deploy/cpp/readme_en.md)[C++ PP-ShiTu Inference](deploy/cpp_shitu/readme_en.md)
- Model Deploy (only support classification for now, recognition coming soon) - Model Deploy (only support classification for now, recognition coming soon)
- [Hub Serving Deployment](./deploy/hubserving/readme_en.md) - [Hub Serving Deployment](./deploy/hubserving/readme_en.md)
- [Mobile Deployment](./deploy/lite/readme_en.md) - [Mobile Deployment](./deploy/lite/readme_en.md)
- [Inference Using whl](./docs/en/whl_en.md) - [Inference Using whl](./docs/en/inference_deployment/whl_deploy_en.md)
- Advanced Tutorial - Advanced Tutorial
- [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md) - [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
- [Model Quantization](./docs/en/extension/paddle_quantization_en.md) - [Model Quantization](./docs/en/algorithm_introduction/model_prune_quantization_en.md)
- [Data Augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md) - [Data Augmentation](./docs/en/advanced_tutorials/DataAugmentation_en.md)
- [License](#License) - [License](#License)
- [Contribution](#Contribution) - [Contribution](#Contribution)
...@@ -110,6 +104,7 @@ Image recognition can be divided into three steps: ...@@ -110,6 +104,7 @@ Image recognition can be divided into three steps:
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised. For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
<a name="Clas_Demo_images"></a>
## PULC demo images ## PULC demo images
<div align="center"> <div align="center">
<img src="docs/images/classification_en.gif"> <img src="docs/images/classification_en.gif">
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册