diff --git a/deploy/configs/PULC/textline_orientation/inference_textline_orientation.yaml b/deploy/configs/PULC/textline_orientation/inference_textline_orientation.yaml new file mode 100644 index 0000000000000000000000000000000000000000..32dcc6924f05a1b5eddcc521d5ad408ca5c1d804 --- /dev/null +++ b/deploy/configs/PULC/textline_orientation/inference_textline_orientation.yaml @@ -0,0 +1,33 @@ +Global: + infer_imgs: "./images/PULC/textline_orientation/textline_orientation_test_0_0.png" + inference_model_dir: "./models/textline_orientation_infer" + batch_size: 1 + use_gpu: True + enable_mkldnn: True + cpu_num_threads: 10 + enable_benchmark: True + use_fp16: False + ir_optim: True + use_tensorrt: False + gpu_mem: 8000 + enable_profile: False + +PreProcess: + transform_ops: + - ResizeImage: + size: [160, 80] + - NormalizeImage: + scale: 0.00392157 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + channel_num: 3 + - ToCHWImage: + +PostProcess: + main_indicator: Topk + Topk: + topk: 1 + class_id_map_file: "../ppcls/utils/PULC/textline_orientation_label_list.txt" + SavePreLabel: + save_dir: ./pre_label/ diff --git a/deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png b/deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png new file mode 100644 index 0000000000000000000000000000000000000000..4b8d24d29ff0f8b4befff6bf943d506c36061d4d Binary files /dev/null and b/deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png differ diff --git a/deploy/images/PULC/textline_orientation/textline_orientation_test_0_1.png b/deploy/images/PULC/textline_orientation/textline_orientation_test_0_1.png new file mode 100644 index 0000000000000000000000000000000000000000..42ad5234973679e65be6054f90c1cc7c0f989bd2 Binary files /dev/null and b/deploy/images/PULC/textline_orientation/textline_orientation_test_0_1.png differ diff --git a/deploy/images/PULC/textline_orientation/textline_orientation_test_1_0.png b/deploy/images/PULC/textline_orientation/textline_orientation_test_1_0.png new file mode 100644 index 0000000000000000000000000000000000000000..ac2447842dd0fac260c0d3c6e0d156dda9890923 Binary files /dev/null and b/deploy/images/PULC/textline_orientation/textline_orientation_test_1_0.png differ diff --git a/deploy/images/PULC/textline_orientation/textline_orientation_test_1_1.png b/deploy/images/PULC/textline_orientation/textline_orientation_test_1_1.png new file mode 100644 index 0000000000000000000000000000000000000000..7d5b75f7e5bbeabded56eba1b4b566c4ca019590 Binary files /dev/null and b/deploy/images/PULC/textline_orientation/textline_orientation_test_1_1.png differ diff --git a/docs/images/PULC/docs/textline_orientation_data_demo.png b/docs/images/PULC/docs/textline_orientation_data_demo.png new file mode 100644 index 0000000000000000000000000000000000000000..fcb48732026e48e14a616967ee06904c2feb9449 Binary files /dev/null and b/docs/images/PULC/docs/textline_orientation_data_demo.png differ diff --git a/docs/zh_CN/PULC/PULC_textline_orientation.md b/docs/zh_CN/PULC/PULC_textline_orientation.md new file mode 100644 index 0000000000000000000000000000000000000000..78c1c9326cde46a80f59952d9edf9510c4fdb6ea --- /dev/null +++ b/docs/zh_CN/PULC/PULC_textline_orientation.md @@ -0,0 +1,439 @@ +# PULC 文本行方向分类模型 + +------ + + +## 目录 + +- [1. 模型和应用场景介绍](#1) +- [2. 模型快速体验](#2) +- [3. 模型训练、评估和预测](#3) + - [3.1 环境配置](#3.1) + - [3.2 数据准备](#3.2) + - [3.2.1 数据集来源](#3.2.1) + - [3.2.2 数据集获取](#3.2.2) + - [3.3 模型训练](#3.3) + - [3.4 模型评估](#3.4) + - [3.5 模型预测](#3.5) +- [4. 模型压缩](#4) + - [4.1 SKL-UGI 知识蒸馏](#4.1) + - [4.1.1 教师模型训练](#4.1.1) + - [4.1.2 蒸馏训练](#4.1.2) +- [5. 超参搜索](#5) +- [6. 模型推理部署](#6) + - [6.1 推理模型准备](#6.1) + - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1) + - [6.1.2 直接下载 inference 模型](#6.1.2) + - [6.2 基于 Python 预测引擎推理](#6.2) + - [6.2.1 预测单张图像](#6.2.1) + - [6.2.2 基于文件夹的批量预测](#6.2.2) + - [6.3 基于 C++ 预测引擎推理](#6.3) + - [6.4 服务化部署](#6.4) + - [6.5 端侧部署](#6.5) + - [6.6 Paddle2ONNX 模型转换与预测](#6.6) + + + + +## 1. 模型和应用场景介绍 + +该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的文本行方向分类模型。该模型可以广泛应用于如文字矫正、文字识别等场景。 + +下表列出了文本行方向分类模型的相关指标,前两行展现了使用 Res2Net200_vd 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。 + + +| 模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 | +|-------|-----------|----------|---------------|---------------| +| SwinTranformer_tiny | 93.61 | 89.64 | 107 | 使用 ImageNet 预训练模型 | +| MobileNetV3_small_x0_35 | 81.40 | 2.96 | 17 | 使用 ImageNet 预训练模型 | +| PPLCNet_x1_0 | 89.99 | 2.11 | 6.5 | 使用 ImageNet 预训练模型 | +| PPLCNet_x1_0* | 94.06 | 2.68 | 6.5 | 使用 ImageNet 预训练模型 | +| PPLCNet_x1_0* | 94.11 | 2.68 | 6.5 | 使用 SSLD 预训练模型 | +| PPLCNet_x1_0** | 96.01 | 2.72 | 6.5 | 使用 SSLD 预训练模型+EDA 策略| +| PPLCNet_x1_0** | 95.86 | 2.72 | 6.5 | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略| + +从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,精度下降也比较明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 8.6 个百分点,速度快10%左右。在此基础上,更改分辨率和stride, 速度变慢 27%,但是精度可以提升 4.5%(采用[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)的方案),使用 SSLD 预训练模型后,精度可以继续提升约 0.05% ,进一步地,当融合EDA策略后,精度可以再提升 1.9 个百分点。最后,融合SKL-UGI 知识蒸馏策略后,在该场景无效。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。 + +**备注:** + +* 其中不带\*的模型表示分辨率为224x224,带\*的模型表示分辨率为48x192(h*w),数据增强从网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) 提供的文本行方向分类器方案。带\*\*的模型表示分辨率为80x160(h*w), 网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过[SHAS 超参数搜索策略](#TODO)搜索得到的。 +* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。 +* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)。 + + + +## 2. 模型快速体验 + + + + +### 2.1 安装 paddleclas + +使用如下命令快速安装 paddlepaddle, paddleclas + +``` +pip3 install paddlepaddle paddleclas +``` + + +### 2.2 预测 + +* 使用命令行快速预测 + +```bash +paddleclas --model_name=textline_orientation --infer_imgs=deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png +``` + +结果如下: +``` +>>> result +class_ids: [0], scores: [1.00], label_names: ['0_degree'], filename: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png +Predict complete! +``` + +**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。 + + +* 在 Python 代码中预测 +```python +import paddleclas +model = paddleclas.PaddleClas(model_name="textline_orientation") +result = model.predict(input_data="deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png") +print(next(result)) +``` + +**备注**:`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下: + +``` +>>> result +[{'class_ids': [0], 'scores': [1.00], 'label_names': ['0_degree'], 'filename': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png'}] +``` + + + + +## 3. 模型训练、评估和预测 + + + +### 3.1 环境配置 + +* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。 + + + +### 3.2 数据准备 + + + +#### 3.2.1 数据集来源 + +本案例中所使用的所有数据集来源于内部数据,如果您希望体验训练过程,可以使用开源数据如[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)。 + + + +#### 3.2.2 数据集获取 + +在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下: + +本案例处理了 ICDAR2019-LSVT 文本行识别数据,将其中的 id 号为 0-1999 作为本案例的数据集合,经过旋转处理成 0 类 和 1 类,其中 0 类代表文本行为正,即 0 度,1 类代表文本行为反,即 180 度。 + +- 训练集合,id号为 0-1799 作为训练集合,0 类和 1 类共 3600 张。 + +- 验证集合,id号为 1800-1999 作为验证集合,0 类和 1 类共 400 张。 + +处理后的数据集部分数据可视化如下: + +![](../../images/PULC/docs/textline_orientation_data_demo.png) + + +此处提供了经过上述方法处理好的数据,可以直接下载得到。 + + +进入 PaddleClas 目录。 + +``` +cd path_to_PaddleClas +``` + +进入 `dataset/` 目录,下载并解压有人/无人场景的数据。 + +```shell +cd dataset +wget https://paddleclas.bj.bcebos.com/data/PULC/textline_orientation.tar +tar -xf textline_orientation.tar +cd ../ +``` + +执行上述命令后,`dataset/` 下存在 `textline_orientation` 目录,该目录中具有以下数据: + +``` + +├── 0 +│   ├── img_0.jpg +│   ├── img_1.jpg +... +├── 1 +│   ├── img_0.jpg +│   ├── img_1.jpg +... +├── train_list.txt +└── val_list.txt +``` + +其中 `0/` 和 `1/` 分别存放 0 类和 1 类的数据。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。 + +**备注:** + +* 关于 `train_list.txt`、`val_list.txt` 的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。 + + + + +### 3.3 模型训练 + + +在 `ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练: + +```shell +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + --gpus="0,1,2,3" \ + tools/train.py \ + -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml +``` + + +**备注:** + +* 由于此时使用的数据集并非内部非开源数据集,此处不能直接复现提供的模型的指标,如果希望得到更高的精度,可以根据需要处理[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)。 + + + +### 3.4 模型评估 + +训练好模型之后,可以通过以下命令实现对模型指标的评估。 + +```bash +python3 tools/eval.py \ + -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ + -o Global.pretrained_model="output/PPLCNet_x1_0/best_model" +``` + +其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 + + + +### 3.5 模型预测 + +模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: + +```python +python3 tools/infer.py \ + -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ + -o Global.pretrained_model=output/PPLCNet_x1_0/best_model \ +``` + +输出结果如下: + +``` +[{'class_ids': [0], 'scores': [1.0], 'file_name': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png', 'label_names': ['0_degree']}] +``` + +**备注:** + +* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 + +* 默认是对 `deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。 + + + + +## 4. 模型压缩 + + + +### 4.1 SKL-UGI 知识蒸馏 + +SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)。 + + + +#### 4.1.1 教师模型训练 + +复用 `./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下: + +```shell +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + --gpus="0,1,2,3" \ + tools/train.py \ + -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ + -o Arch.name=ResNet101_vd +``` + +当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。 + + + +#### 4.1.2 蒸馏训练 + +配置文件`ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下: + +```shell +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + --gpus="0,1,2,3" \ + tools/train.py \ + -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml \ + -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model +``` + +当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。 + + + + +## 5. 超参搜索 + +在 [3.2 节](#3.2)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。 + +**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。 + + + +## 6. 模型推理部署 + + + +### 6.1 推理模型准备 + +Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 + +当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。 + + + +### 6.1.1 基于训练得到的权重导出 inference 模型 + +此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型: + +```bash +python3 tools/export_model.py \ + -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ + -o Global.pretrained_model=output/PPLCNet_x1_0/best_model \ + -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_textline_orientation_infer +``` +执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_textline_orientation_infer` 文件夹,`models` 文件夹下应有如下文件结构: + +``` +├── PPLCNet_x1_0_textline_orientation_infer +│ ├── inference.pdiparams +│ ├── inference.pdiparams.info +│ └── inference.pdmodel +``` + +**备注:** 此处的最佳权重可以根据实际情况来选择,如果希望导出知识蒸馏后的权重,则最佳权重保存在`output/DistillationModel/best_model_student.pdparams`,在导出命令中更改`-o Global.pretrained_model=xx`中的字段为`output/DistillationModel/best_model_student`即可。 + + + +### 6.1.2 直接下载 inference 模型 + +[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。 + +``` +cd deploy/models +# 下载 inference 模型并解压 +wget https://paddleclas.bj.bcebos.com/models/PULC/textline_orientation_infer.tar && tar -xf textline_orientation_infer.tar +``` + +解压完毕后,`models` 文件夹下应有如下文件结构: + +``` +├── textline_orientation_infer +│ ├── inference.pdiparams +│ ├── inference.pdiparams.info +│ └── inference.pdmodel +``` + + + +### 6.2 基于 Python 预测引擎推理 + + + + +#### 6.2.1 预测单张图像 + +返回 `deploy` 目录: + +``` +cd ../ +``` + +运行下面的命令,对图像 `./images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行文字方向cd分类。 + +```shell +# 使用下面的命令使用 GPU 进行预测 +python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml +# 使用下面的命令使用 CPU 进行预测 +python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.use_gpu=False +``` + +输出结果如下。 + +``` +textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree'] +``` + + + +#### 6.2.2 基于文件夹的批量预测 + +如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。 + +```shell +# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False +python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.infer_imgs="./images/PULC/textline_orientation/" +``` + +终端中会输出该文件夹内所有图像的分类结果,如下所示。 + +``` +textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree'] +textline_orientation_test_0_1.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree'] +textline_orientation_test_1_0.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree'] +textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree'] +``` + +其中,`0_degree` 表示该文本行为 0 度,`180_degree` 表示该文本行为 180 度。 + + + +### 6.3 基于 C++ 预测引擎推理 + +PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 + + + +### 6.4 服务化部署 + +Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 + +PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。 + + + +### 6.5 端侧部署 + +Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 + +PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。 + + + +### 6.6 Paddle2ONNX 模型转换与预测 + +Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 + +PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。 diff --git a/ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml b/ppcls/configs/PULC/textline_orientation/MobileNetV3_small_x0_35.yaml similarity index 84% rename from ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml rename to ppcls/configs/PULC/textline_orientation/MobileNetV3_small_x0_35.yaml index 402458d5c80ceedb2ef2711be244b400d062149e..0806f4edc10fd999be7cdca3fab49baed0e71845 100644 --- a/ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml +++ b/ppcls/configs/PULC/textline_orientation/MobileNetV3_small_x0_35.yaml @@ -20,7 +20,7 @@ Global: # model architecture Arch: - name: MobileNetV3_large_x1_0 + name: MobileNetV3_small_x0_35 class_num: 2 pretrained: True use_sync_bn: True @@ -45,7 +45,7 @@ Optimizer: warmup_epoch: 5 regularizer: name: 'L2' - coeff: 0.00002 + coeff: 0.00001 # data loader for train and eval @@ -53,8 +53,8 @@ DataLoader: Train: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/train_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/train_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -79,8 +79,8 @@ DataLoader: Eval: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/val_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/val_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -104,7 +104,7 @@ DataLoader: use_shared_memory: True Infer: - infer_imgs: docs/images/inference_deployment/whl_demo.jpg + infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png batch_size: 10 transforms: - DecodeImage: @@ -122,8 +122,8 @@ Infer: - ToCHWImage: PostProcess: name: Topk - topk: 5 - class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + topk: 1 + class_id_map_file: ppcls/utils/PULC/textline_orientation_label_list.txt Metric: Train: diff --git a/ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml similarity index 87% rename from ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml rename to ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml index 752f2967877995c65c761c73c873dcaa98748a5e..b0e30bbfc27015a79195b99dad8758f448367303 100644 --- a/ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml +++ b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml @@ -53,8 +53,8 @@ DataLoader: Train: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/train_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/train_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -92,8 +92,8 @@ DataLoader: Eval: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/val_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/val_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -115,7 +115,7 @@ DataLoader: use_shared_memory: True Infer: - infer_imgs: docs/images/inference_deployment/whl_demo.jpg + infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png batch_size: 10 transforms: - DecodeImage: @@ -131,8 +131,8 @@ Infer: - ToCHWImage: PostProcess: name: Topk - topk: 5 - class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + topk: 1 + class_id_map_file: ppcls/utils/PULC/textline_orientation_label_list.txt Metric: Train: diff --git a/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_224x224.yaml b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_224x224.yaml new file mode 100644 index 0000000000000000000000000000000000000000..fabf6940d151ea7f89afa519acef8c8ff1cbb803 --- /dev/null +++ b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_224x224.yaml @@ -0,0 +1,132 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + save_interval: 1 + eval_during_train: True + start_eval_epoch: 18 + eval_interval: 1 + epochs: 20 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 224, 224] + save_inference_dir: ./inference + # training model under @to_static + to_static: False + use_dali: False + +# model architecture +Arch: + name: PPLCNet_x1_0 + class_num: 2 + pretrained: True + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + Eval: + - CELoss: + weight: 1.0 + + +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.04 + warmup_epoch: 5 + regularizer: + name: 'L2' + coeff: 0.00004 + + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - RandCropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + + sampler: + name: DistributedBatchSampler + batch_size: 256 + drop_last: False + shuffle: True + loader: + num_workers: 16 + use_shared_memory: True + + Eval: + dataset: + name: ImageNetDataset + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/val_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: False + loader: + num_workers: 8 + use_shared_memory: True + +Infer: + infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 1 + class_id_map_file: ppcls/utils/PULC/textline_orientation_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 2] + Eval: + - TopkAcc: + topk: [1, 2] diff --git a/ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml similarity index 89% rename from ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml rename to ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml index 0c103feb7f0ddd86aec953a798003937b327383b..86bbc8b3336b0246e1c0eecd9c3be7f5ff4f3b48 100644 --- a/ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml +++ b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml @@ -72,8 +72,8 @@ DataLoader: Train: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/train_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/train_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -110,8 +110,8 @@ DataLoader: Eval: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/val_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/val_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -133,7 +133,7 @@ DataLoader: use_shared_memory: True Infer: - infer_imgs: docs/images/inference_deployment/whl_demo.jpg + infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png batch_size: 10 transforms: - DecodeImage: @@ -149,8 +149,8 @@ Infer: - ToCHWImage: PostProcess: name: Topk - topk: 5 - class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + topk: 1 + class_id_map_file: ppcls/utils/PULC/textline_orientation_label_list.txt Metric: Train: diff --git a/ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_search.yaml similarity index 87% rename from ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml rename to ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_search.yaml index 35e8995a7ebf4f9d0f3da848ebd17f4a59726828..34056233c8d14265cc8bcb8ab5a1996d8ecdc39c 100644 --- a/ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml +++ b/ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_search.yaml @@ -54,8 +54,8 @@ DataLoader: Train: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/train_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/train_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -93,8 +93,8 @@ DataLoader: Eval: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/val_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/val_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -116,7 +116,7 @@ DataLoader: use_shared_memory: True Infer: - infer_imgs: docs/images/inference_deployment/whl_demo.jpg + infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png batch_size: 10 transforms: - DecodeImage: @@ -132,8 +132,8 @@ Infer: - ToCHWImage: PostProcess: name: Topk - topk: 5 - class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + topk: 1 + class_id_map_file: ppcls/utils/PULC/textline_orientation_label_list.txt Metric: Train: diff --git a/ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml b/ppcls/configs/PULC/textline_orientation/SwinTransformer_tiny_patch4_window7_224.yaml similarity index 89% rename from ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml rename to ppcls/configs/PULC/textline_orientation/SwinTransformer_tiny_patch4_window7_224.yaml index 6a3fedf30f06a23d31022a3c312b18f99a75c2dc..41fee479fe3c2ef6bfcf66d33e076ff0ad23df06 100644 --- a/ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml +++ b/ppcls/configs/PULC/textline_orientation/SwinTransformer_tiny_patch4_window7_224.yaml @@ -62,8 +62,8 @@ DataLoader: Train: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/train_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/train_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -109,8 +109,8 @@ DataLoader: Eval: dataset: name: ImageNetDataset - image_root: ./dataset/text_direction/ - cls_label_path: ./dataset/text_direction/val_list.txt + image_root: ./dataset/textline_orientation/ + cls_label_path: ./dataset/textline_orientation/val_list.txt transform_ops: - DecodeImage: to_rgb: True @@ -134,7 +134,7 @@ DataLoader: use_shared_memory: True Infer: - infer_imgs: docs/images/inference_deployment/whl_demo.jpg + infer_imgs: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png batch_size: 10 transforms: - DecodeImage: @@ -152,8 +152,8 @@ Infer: - ToCHWImage: PostProcess: name: Topk - topk: 5 - class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + topk: 1 + class_id_map_file: ppcls/utils/PULC/textline_orientation_label_list.txt Metric: Train: diff --git a/ppcls/configs/PULC/text_direction/search.yaml b/ppcls/configs/PULC/textline_orientation/search.yaml similarity index 100% rename from ppcls/configs/PULC/text_direction/search.yaml rename to ppcls/configs/PULC/textline_orientation/search.yaml diff --git a/ppcls/utils/PULC/textline_orientation_label_list.txt b/ppcls/utils/PULC/textline_orientation_label_list.txt new file mode 100644 index 0000000000000000000000000000000000000000..207b70c6b188d05ecb2a04c8f4946c993616e544 --- /dev/null +++ b/ppcls/utils/PULC/textline_orientation_label_list.txt @@ -0,0 +1,2 @@ +0 0_degree +1 180_degree