diff --git a/docs/zh_CN/faq_series/faq_2021_s2.md b/docs/zh_CN/faq_series/faq_2021_s2.md index 7af1d70a7c3959ce25f802e839ad22b04bed2412..2198f07ae4db9318301b08d49e0149856e316d30 100644 --- a/docs/zh_CN/faq_series/faq_2021_s2.md +++ b/docs/zh_CN/faq_series/faq_2021_s2.md @@ -31,3 +31,11 @@ ### Q1.6 识别模型怎么在预训练模型的基础上进行微调训练? **A**:识别模型的微调训练和分类模型的微调训练类似,识别模型可以加载商品的预训练模型],训练过程可以参考[识别模型训练](../tutorials/getting_started_retrieval.md),后续我们也会持续细化这块的文档。 + +### Q1.7 PaddleClas和PaddleDetection区别 + +**A**:PaddleClas是一个兼主体检测、图像分类、图像检索于一体的图像识别repo,用于解决大部分图像识别问题,用户可以很方便的使用PaddleClas来解决小样本、多类别的图像识别问题。PaddleDetection提供了目标检测、关键点检测、多目标跟踪等能力,方便用户定位图像中的感兴趣的点和区域,被广泛应用于工业质检、遥感图像检测、无人巡检等项目。 + +### Q1.8 PaddleClas 2.2和PaddleClas 2.1完全兼容吗? + +**A**:PaddleClas2.2相对PaddleClas2.1新增了metric learning模块,主体检测模块、向量检索模块。另外,也提供了商品识别、车辆识别、logo识别和动漫人物识别等4个场景应用示例。用户可以基于PaddleClas 2.2快速构建图像识别系统。在图像分类模块,二者的使用方法类似,可以参考[图像分类示例](../tutorials/getting_started.md)快速迭代和评估。新增的metric learning模块,可以参考[metric learning示例](../tutorials/getting_started_retrieval.md)。另外,新版本暂时还不支持fp16、dali训练,也暂时不支持多标签训练,这块内容将在不久后支持。