From 5f6992d9a87ee290ca74c43983b143509c179a06 Mon Sep 17 00:00:00 2001 From: littletomatodonkey <2120160898@bit.edu.cn> Date: Sat, 2 Jan 2021 23:54:13 +0800 Subject: [PATCH] Update faq_2020_s1.md --- docs/zh_CN/faq_series/faq_2020_s1.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/zh_CN/faq_series/faq_2020_s1.md b/docs/zh_CN/faq_series/faq_2020_s1.md index 72317509..6f0f4f77 100644 --- a/docs/zh_CN/faq_series/faq_2020_s1.md +++ b/docs/zh_CN/faq_series/faq_2020_s1.md @@ -332,7 +332,7 @@ Cosine_decay和piecewise_decay的学习率变化曲线如下图所示,容易 - 挖掘相关数据:用在现有数据集上训练饱和的模型去对相关的数据做预测,将置信度较高的数据打label后加入训练集进一步训练,如此循环操作,可进一步提升模型的精度。 -- 知识蒸馏:可以先使用一个较大的模型在该数据集上训练一个精度较高的teacher model,然后使用该teacher model去教导一个Student model,其中,Student model即为目标模型。PaddleClas提供了百度自研的SSLD知识蒸馏方案,即使在ImageNet-1k这么有挑战的分类任务上,其也能稳定提升3%以上。SSLD知识蒸馏的的章节请参考[**SSLD知识蒸馏**](https://paddleclas.readthedocs.io/zh_CN/latest/advanced_tutorials/distillation/distillation.html)。 +- 知识蒸馏:可以先使用一个较大的模型在该数据集上训练一个精度较高的teacher model,然后使用该teacher model去教导一个Student model,其中,Student model即为目标模型。PaddleClas提供了百度自研的SSLD知识蒸馏方案,即使在ImageNet-1k这么有挑战的分类任务上,其也能稳定提升3%以上。SSLD知识蒸馏的的章节请参考[**SSLD知识蒸馏**](../advanced_tutorials/distillation/distillation.md)。 -- GitLab