提交 5c39dfa6 编写于 作者: G gaotingquan 提交者: Tingquan Gao

rename gvt.py -> twins.py & twins-svt -> twins-alt-gvt

上级 7415a859
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
<a name='1'></a> <a name='1'></a>
## 1. Overview ## 1. Overview
The Twins network includes Twins-PCPVT and Twins-SVT, which focuses on the meticulous design of the spatial attention mechanism, resulting in a simple but more effective solution. Since the architecture only involves matrix multiplication, and the current deep learning framework has a high degree of optimization for matrix multiplication, the architecture is very efficient and easy to implement. Moreover, this architecture can achieve excellent performance in a variety of downstream vision tasks such as image classification, target detection, and semantic segmentation. [Paper](https://arxiv.org/abs/2104.13840). The Twins network includes Twins-PCPVT and Twins-AVT-GVT, which focuses on the meticulous design of the spatial attention mechanism, resulting in a simple but more effective solution. Since the architecture only involves matrix multiplication, and the current deep learning framework has a high degree of optimization for matrix multiplication, the architecture is very efficient and easy to implement. Moreover, this architecture can achieve excellent performance in a variety of downstream vision tasks such as image classification, target detection, and semantic segmentation. [Paper](https://arxiv.org/abs/2104.13840).
<a name='2'></a> <a name='2'></a>
## 2. Accuracy, FLOPs and Parameters ## 2. Accuracy, FLOPs and Parameters
......
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
### 1.1 模型简介 ### 1.1 模型简介
Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制进行了精心设计,得到了简单却更为有效的方案。由于该体系结构仅涉及矩阵乘法,而目前的深度学习框架中对矩阵乘法有较高的优化程度,因此该体系结构十分高效且易于实现。并且,该体系结构在图像分类、目标检测和语义分割等多种下游视觉任务中都能够取得优异的性能。[论文地址](https://arxiv.org/abs/2104.13840) Twins 网络包括 Twins-PCPVT 和 Twins-ALT-GVT,其重点对空间注意力机制进行了精心设计,得到了简单却更为有效的方案。由于该体系结构仅涉及矩阵乘法,而目前的深度学习框架中对矩阵乘法有较高的优化程度,因此该体系结构十分高效且易于实现。并且,该体系结构在图像分类、目标检测和语义分割等多种下游视觉任务中都能够取得优异的性能。[论文地址](https://arxiv.org/abs/2104.13840)
<a name='1.2'></a> <a name='1.2'></a>
......
...@@ -59,7 +59,7 @@ from .model_zoo.swin_transformer_v2 import SwinTransformerV2_tiny_patch4_window8 ...@@ -59,7 +59,7 @@ from .model_zoo.swin_transformer_v2 import SwinTransformerV2_tiny_patch4_window8
from .model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384 from .model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
from .model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L from .model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
from .model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0 from .model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
from .model_zoo.gvt import pcpvt_small, pcpvt_base, pcpvt_large, alt_gvt_small, alt_gvt_base, alt_gvt_large from .model_zoo.twins import pcpvt_small, pcpvt_base, pcpvt_large, alt_gvt_small, alt_gvt_base, alt_gvt_large
from .model_zoo.levit import LeViT_128S, LeViT_128, LeViT_192, LeViT_256, LeViT_384 from .model_zoo.levit import LeViT_128S, LeViT_128, LeViT_192, LeViT_256, LeViT_384
from .model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, DLA60x, DLA60x_c, DLA102, DLA102x, DLA102x2, DLA169 from .model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, DLA60x, DLA60x_c, DLA102, DLA102x, DLA102x2, DLA169
from .model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152 from .model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册