Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
57f2cb4f
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
57f2cb4f
编写于
11月 16, 2021
作者:
C
cuicheng01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update FLOPs and Params for all models
上级
423144c0
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
255 addition
and
252 deletion
+255
-252
docs/zh_CN/algorithm_introduction/ImageNet_models.md
docs/zh_CN/algorithm_introduction/ImageNet_models.md
+255
-252
未找到文件。
docs/zh_CN/algorithm_introduction/ImageNet_models.md
浏览文件 @
57f2cb4f
...
...
@@ -34,10 +34,11 @@
<a
name=
"模型库概览图"
></a>
### 模型库概览图
基于ImageNet1k分类数据集,PaddleClas支持3
6个系列分类网络结构以及对应的175
个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
基于ImageNet1k分类数据集,PaddleClas支持3
7个系列分类网络结构以及对应的217
个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
*
Arm CPU的评估环境基于骁龙855(SD855)。
*
Intel CPU的评估环境基于Intel(R) Xeon(R) Gold 6148。
*
GPU评估环境基于T4机器,在FP32+TensorRT配置下运行500次测得(去除前10次的warmup时间)。
*
FLOPs与Params通过
`paddle.flops()`
计算得到(PaddlePaddle版本为2.2)
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。
...
...
@@ -58,39 +59,39 @@
<a
name=
"服务器端知识蒸馏模型"
></a>
#### 服务器端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 |
7.39 | 21.82
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 |
8.67 | 25.58
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 |
16.1 | 44.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 |
8.37 | 25.0
6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
| Res2Net101_vd_
<br>
26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 |
16.67 | 45.22
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 |
31.49 | 76.21
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.
14 | 21.29
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 |
34.435 | 34.58 | 77.4
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 |
57.83 | 128.97
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 |
3.93 | 21.84
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 |
4.35 | 25.63
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 |
8.08 | 44.6
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 |
4.28 | 25.7
6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams
)
|
| Res2Net101_vd_
<br>
26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 |
8.35 | 45.35
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 |
15.77 | 76.44
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.
32 | 21.35
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 |
17.34 | 17.34 | 77.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 |
29.00 | 129.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
<a
name=
"移动端知识蒸馏模型"
></a>
#### 移动端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | SD855 time(ms)
<br>
bs=1 | F
lops(G
) | Params(M) | 模型大小(M) | 下载地址 |
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | SD855 time(ms)
<br>
bs=1 | F
LOPs(M
) | Params(M) | 模型大小(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 |
1.11 | 4.19
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 |
0.6 | 3.4
4 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 |
0.026 | 1.66
| 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 |
0.45 | 5.47
| 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 |
0.123 | 2.94
| 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 |
0.44 | 7.3
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 |
578.88 | 4.25
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 |
327.84 | 3.5
4 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 |
14.56 | 1.67
| 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 |
229.66 | 5.50
| 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 |
63.67 | 2.95
| 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 |
236.89 | 7.38
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
<a
name=
"Intel-CPU端知识蒸馏模型"
></a>
#### Intel CPU端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)
<br>
bs=1 | F
lop
s(M) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Reference
<br>
Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)
<br>
bs=1 | F
LOP
s(M) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|
| PPLCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47
| 1.
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams
)
|
| PPLCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 16
1 | 3.0
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams
)
|
| PPLCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906
| 9.0
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams
)
|
| PPLCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47
.28 | 1.8
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams
)
|
| PPLCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 16
0.81 | 2.96
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams
)
|
| PPLCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906
.49 | 9.04
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams
)
|
...
...
@@ -104,14 +105,14 @@ PP-LCNet系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
<br>
bs=1 | FLOPs(M) | Params(M) | 下载地址 |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18
| 1.5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
)
|
| PPLCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29
| 1.6
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
)
|
| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47
| 1.
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
)
|
| PPLCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 9
9 | 2.4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
)
|
| PPLCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 16
1 | 3.0
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
)
|
| PPLCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 34
2 | 4.5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams
)
|
| PPLCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.5 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams
)
|
| PPLCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams
)
|
| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18
.25 | 1.52
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams
)
|
| PPLCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29
.46 | 1.65
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams
)
|
| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47
.28 | 1.8
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams
)
|
| PPLCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 9
8.82 | 2.37
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
)
|
| PPLCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 16
0.81 | 2.96
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams
)
|
| PPLCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 34
1.86 | 4.52
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams
)
|
| PPLCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.5
4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams
)
|
| PPLCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.0
4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams
)
|
<a
name=
"ResNet系列"
></a>
...
...
@@ -119,23 +120,23 @@ PP-LCNet系列模型的精度、速度指标如下表所示,更多关于该系
ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
ResNet及其Vd系列模型文档
](
../models/ResNet_and_vd.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
| ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 |
3.66 | 11.69
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 |
4.14 | 11.71
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
|
| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 |
7.36 | 21.8
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams
)
|
| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 |
7.39 | 21.82
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 |
7.39 | 21.82
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 |
8.19 | 25.56
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
)
|
| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 |
8.67 | 25.58
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
|
| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 |
8.67 | 25.58
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
|
| ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 |
15.52 | 44.5
5 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams
)
|
| ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 |
16.1 | 44.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
|
| ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 |
23.05 | 60.19
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams
)
|
| ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 |
23.53 | 60.21
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
|
| ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 |
30.53 | 74.74
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
|
| ResNet50_vd_
<br>
ssld | 0.8300 | 0.9640 | 3.53131 | 8.09057 |
8.67 | 25.58
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
| ResNet101_vd_
<br>
ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 |
16.1 | 44.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
| ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 |
1.83 | 11.70
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 |
2.07 | 11.72
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams
)
|
| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 |
3.68 | 21.81
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams
)
|
| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 |
3.93 | 21.84
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 |
3.93 | 21.84
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams
)
|
| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 |
4.11 | 25.61
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams
)
|
| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 |
4.35 | 25.63
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams
)
|
| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 |
4.35 | 25.63
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
)
|
| ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 |
7.83 | 44.6
5 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams
)
|
| ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 |
8.08 | 44.6
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams
)
|
| ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 |
11.56 | 60.34
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams
)
|
| ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 |
11.80 | 60.36
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams
)
|
| ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 |
15.30 | 74.93
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams
)
|
| ResNet50_vd_
<br>
ssld | 0.8300 | 0.9640 | 3.53131 | 8.09057 |
4.35 | 25.63
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams
)
|
| ResNet101_vd_
<br>
ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 |
8.08 | 44.6
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams
)
|
<a
name=
"移动端系列"
></a>
...
...
@@ -143,48 +144,48 @@ ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
移动端系列模型文档
](
../models/Mobile.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
<br>
bs=1 | F
lops(G
) | Params(M) | 模型大小(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
<br>
bs=1 | F
LOPs(M
) | Params(M) | 模型大小(M) | 下载地址 |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_
<br>
x0_25 | 0.5143 | 0.7546 | 3.21985 |
0.07 | 0.46
| 1.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_5 | 0.6352 | 0.8473 | 9.579599 |
0.28 | 1.31
| 5.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_75 | 0.6881 | 0.8823 | 19.436399 |
0.63 | 2.55
| 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams
)
|
| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 |
1.11 | 4.19
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams
)
|
| MobileNetV1_
<br>
ssld | 0.7789 | 0.9394 | 32.523048 |
1.11 | 4.19
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_25 | 0.5321 | 0.7652 | 3.79925 |
0.05 | 1.5
| 6.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_5 | 0.6503 | 0.8572 | 8.7021 |
0.17 | 1.93
| 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_75 | 0.6983 | 0.8901 | 15.531351 |
0.35 | 2.58
| 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams
)
|
| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 |
0.6 | 3.4
4 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x1_5 | 0.7412 | 0.9167 | 45.623848 |
1.32 | 6.76
| 26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x2_0 | 0.7523 | 0.9258 | 74.291649 |
2.32 | 11.1
3 | 43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
)
|
| MobileNetV2_
<br>
ssld | 0.7674 | 0.9339 | 23.317699 |
0.6 | 3.4
4 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_25 | 0.7641 | 0.9295 | 28.217701 |
0.714 | 7.44
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_0 | 0.7532 | 0.9231 | 19.30835 |
0.45 | 5.47
| 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_75 | 0.7314 | 0.9108 | 13.5646 |
0.296 | 3.91
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_5 | 0.6924 | 0.8852 | 7.49315 |
0.138 | 2.67
| 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_35 | 0.6432 | 0.8546 | 5.13695 |
0.077 | 2.
1 | 8.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x1_25 | 0.7067 | 0.8951 | 9.2745 |
0.195 | 3.62
| 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x1_0 | 0.6824 | 0.8806 | 6.5463 |
0.123 | 2.94
| 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_75 | 0.6602 | 0.8633 | 5.28435 |
0.088 | 2.37
| 9.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_5 | 0.5921 | 0.8152 | 3.35165 |
0.043 | 1.9
| 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_35 | 0.5303 | 0.7637 | 2.6352 |
0.026 | 1.66
| 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 |
0.026 | 1.66
| 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 |
0.45 | 5.47
| 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_
<br>
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 |
0.123 | 2.94
| 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 |
0.28 | 2.26
| 9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_25 | 0.4990 | 0.7379 | 2.329 |
0.03 | 0.6
| 2.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_33 | 0.5373 | 0.7705 | 2.64335 |
0.04 | 0.64
| 2.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_5 | 0.6032 | 0.8226 | 4.2613 |
0.08 | 1.36
| 5.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x1_5 | 0.7163 | 0.9015 | 19.3522 |
0.58 | 3.47
| 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x2_0 | 0.7315 | 0.9120 | 34.770149 |
1.12 | 7.32
| 28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
swish | 0.7003 | 0.8917 | 16.023151 |
0.29 | 2.26
| 9.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams
)
|
| GhostNet_
<br>
x0_5 | 0.6688 | 0.8695 | 5.7143 |
0.082 | 2.6
| 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_0 | 0.7402 | 0.9165 | 13.5587 |
0.294 | 5.2
| 20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3 | 0.7579 | 0.9254 | 19.9825 |
0.44 | 7.3
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3_ssld | 0.7938 | 0.9449 | 19.9825 |
0.44 | 7.3
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
| ESNet_x0_25 | 62.48 | 83.46 ||
0.031
| 2.83 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams
)
|
| ESNet_x0_5 | 68.82 | 88.04 ||
0.067
| 3.25 | 13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams
)
|
| ESNet_x0_75 | 72.24 | 90.45 ||
0.12
4 | 3.87 | 15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams
)
|
| ESNet_x1_0 | 73.92 | 91.40 ||
0.197
| 4.64 | 18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_25 | 0.5143 | 0.7546 | 3.21985 |
43.56 | 0.48
| 1.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_5 | 0.6352 | 0.8473 | 9.579599 |
154.57 | 1.34
| 5.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams
)
|
| MobileNetV1_
<br>
x0_75 | 0.6881 | 0.8823 | 19.436399 |
333.00 | 2.60
| 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams
)
|
| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 |
578.88 | 4.25
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams
)
|
| MobileNetV1_
<br>
ssld | 0.7789 | 0.9394 | 32.523048 |
578.88 | 4.25
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_25 | 0.5321 | 0.7652 | 3.79925 |
34.18 | 1.53
| 6.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_5 | 0.6503 | 0.8572 | 8.7021 |
99.48 | 1.98
| 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x0_75 | 0.6983 | 0.8901 | 15.531351 |
197.37 | 2.65
| 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams
)
|
| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 |
327.84 | 3.5
4 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x1_5 | 0.7412 | 0.9167 | 45.623848 |
702.35 | 6.90
| 26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams
)
|
| MobileNetV2_
<br>
x2_0 | 0.7523 | 0.9258 | 74.291649 |
1217.25 | 11.3
3 | 43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams
)
|
| MobileNetV2_
<br>
ssld | 0.7674 | 0.9339 | 23.317699 |
327.84 | 3.5
4 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_25 | 0.7641 | 0.9295 | 28.217701 |
362.70 | 7.47
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_0 | 0.7532 | 0.9231 | 19.30835 |
229.66 | 5.50
| 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_75 | 0.7314 | 0.9108 | 13.5646 |
151.70 | 3.93
| 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_5 | 0.6924 | 0.8852 | 7.49315 |
71.83 | 2.69
| 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x0_35 | 0.6432 | 0.8546 | 5.13695 |
40.90 | 2.1
1 | 8.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x1_25 | 0.7067 | 0.8951 | 9.2745 |
100.07 | 3.64
| 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x1_0 | 0.6824 | 0.8806 | 6.5463 |
63.67 | 2.95
| 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_75 | 0.6602 | 0.8633 | 5.28435 |
46.02 | 2.38
| 9.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_5 | 0.5921 | 0.8152 | 3.35165 |
22.60 | 1.91
| 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_35 | 0.5303 | 0.7637 | 2.6352 |
14.56 | 1.67
| 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams
)
|
| MobileNetV3_
<br>
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 |
14.56 | 1.67
| 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams
)
|
| MobileNetV3_
<br>
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 |
229.66 | 5.50
| 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
)
|
| MobileNetV3_small_
<br>
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 |
63.67 | 2.95
| 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
)
|
| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 |
148.86 | 2.29
| 9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_25 | 0.4990 | 0.7379 | 2.329 |
18.95 | 0.61
| 2.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_33 | 0.5373 | 0.7705 | 2.64335 |
24.04 | 0.65
| 2.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x0_5 | 0.6032 | 0.8226 | 4.2613 |
42.58 | 1.37
| 5.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x1_5 | 0.7163 | 0.9015 | 19.3522 |
301.35 | 3.53
| 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
x2_0 | 0.7315 | 0.9120 | 34.770149 |
571.70 | 7.40
| 28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams
)
|
| ShuffleNetV2_
<br>
swish | 0.7003 | 0.8917 | 16.023151 |
148.86 | 2.29
| 9.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams
)
|
| GhostNet_
<br>
x0_5 | 0.6688 | 0.8695 | 5.7143 |
46.15 | 2.60
| 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_0 | 0.7402 | 0.9165 | 13.5587 |
148.78 | 5.21
| 20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3 | 0.7579 | 0.9254 | 19.9825 |
236.89 | 7.38
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3_ssld | 0.7938 | 0.9449 | 19.9825 |
236.89 | 7.38
| 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams
)
|
| ESNet_x0_25 | 62.48 | 83.46 ||
30.85
| 2.83 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams
)
|
| ESNet_x0_5 | 68.82 | 88.04 ||
67.31
| 3.25 | 13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams
)
|
| ESNet_x0_75 | 72.24 | 90.45 ||
123.7
4 | 3.87 | 15 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams
)
|
| ESNet_x1_0 | 73.92 | 91.40 ||
197.33
| 4.64 | 18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams
)
|
<a
name=
"SEResNeXt与Res2Net系列"
></a>
...
...
@@ -193,33 +194,33 @@ ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于
SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
SEResNeXt与Res2Net系列模型文档
](
../models/SEResNext_and_Res2Net.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 |
8.52 | 25.7
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 |
8.37 | 25.06
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 |
9.01 | 25.7
2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams
)
|
| Res2Net101_vd_
<br>
26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 |
16.67 | 45.22
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 |
31.49 | 76.21
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 |
31.49 | 76.21
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 |
8.02 | 23.64
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 |
8.5 | 23.66
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 |
15.06 | 42.36
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 |
15.54 | 42.38
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 |
15.01 | 41.54
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 |
15.49 | 41.56
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 |
29.05 | 78.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 |
29.53 | 78.14
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 |
22.01 | 56.28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 |
22.49 | 56.3
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 |
43.03 | 107.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 |
43.52 | 107.59
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 |
4.14 | 11.8
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 |
7.84 | 21.98
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 |
8.67 | 28.09
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 |
8.02 | 26.16
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 |
10.76 | 26.28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7939 | 0.9443 | 18.82604 | 25.31814 |
15.02 | 46.28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams
)
|
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 |
45.83 | 114.29
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams
)
|
| Res2Net50_
<br>
26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 |
4.28 | 25.76
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams
)
|
| Res2Net50_vd_
<br>
26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 |
4.52 | 25.78
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net50_
<br>
14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 |
4.20 | 25.1
2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams
)
|
| Res2Net101_vd_
<br>
26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 |
8.35 | 45.35
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 |
15.77 | 76.44
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams
)
|
| Res2Net200_vd_
<br>
26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 |
15.77 | 76.44
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams
)
|
| ResNeXt50_
<br>
32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 |
4.26 | 25.10
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams
)
|
| ResNeXt50_vd_
<br>
32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 |
4.50 | 25.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt50_
<br>
64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 |
8.02 | 45.29
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams
)
|
| ResNeXt50_vd_
<br>
64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 |
8.26 | 45.31
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 |
8.01 | 44.32
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams
)
|
| ResNeXt101_vd_
<br>
32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 |
8.25 | 44.33
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt101_
<br>
64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 |
15.52 | 83.66
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams
)
|
| ResNeXt101_vd_
<br>
64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 |
15.76 | 83.68
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
)
|
| ResNeXt152_
<br>
32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 |
11.76 | 60.15
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams
)
|
| ResNeXt152_vd_
<br>
32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 |
12.01 | 60.17
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams
)
|
| ResNeXt152_
<br>
64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 |
23.03 | 115.2
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams
)
|
| ResNeXt152_vd_
<br>
64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 |
23.27 | 115.29
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams
)
|
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 |
2.07 | 11.81
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams
)
|
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 |
3.93 | 22.00
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams
)
|
| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 |
4.36 | 28.16
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams
)
|
| SE_ResNeXt50_
<br>
32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 |
4.27 | 27.63
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams
)
|
| SE_ResNeXt50_vd_
<br>
32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 |
5.64 | 27.76
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams
)
|
| SE_ResNeXt101_
<br>
32x4d | 0.7939 | 0.9443 | 18.82604 | 25.31814 |
8.03 | 49.09
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams
)
|
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 |
24.45 | 122.03
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams
)
|
<a
name=
"DPN与DenseNet系列"
></a>
...
...
@@ -228,18 +229,18 @@ SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多
DPN与DenseNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
DPN与DenseNet系列模型文档
](
../models/DPN_DenseNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
| DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 |
5.69 | 7.98
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams
)
|
| DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 |
15.49 | 28.68
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams
)
|
| DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 |
6.74 | 14.15
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams
)
|
| DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 |
8.61 | 20.01
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams
)
|
| DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 |
11.54 | 33.37
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams
)
|
| DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 |
4.03 | 10.7
8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams
)
|
| DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 |
12.54 | 36.2
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams
)
|
| DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 |
22.22 | 58.46
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams
)
|
| DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 |
35.06 | 82.97
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams
)
|
| DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 |
30.51 | 75.36
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams
)
|
| DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 |
2.87 | 8.06
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams
)
|
| DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 |
7.79 | 28.90
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams
)
|
| DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 |
3.40 | 14.31
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams
)
|
| DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 |
4.34 | 20.24
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams
)
|
| DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 |
5.82 | 33.74
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams
)
|
| DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 |
2.35 | 12.6
8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams
)
|
| DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 |
6.54 | 37.7
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams
)
|
| DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 |
11.728 | 61.74
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams
)
|
| DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 |
18.38 | 87.13
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams
)
|
| DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 |
16.09 | 79.48
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams
)
|
...
...
@@ -249,18 +250,18 @@ DPN与DenseNet系列模型的精度、速度指标如下表所示,更多关于
HRNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
HRNet系列模型文档
](
../models/HRNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.
14 | 21.29
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
)
|
| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.
14 | 21.29
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
| HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 |
16.23 | 37.71
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams
)
|
| HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 |
17.86 | 41.23
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams
)
|
| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 |
25.41 | 57.55
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 |
29.79 | 67.0
6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 |
34.58 | 77.4
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams
)
|
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 |
34.58 | 77.4
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 |
57.83 | 128.06
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams
)
|
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 |
57.83 | 128.97
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
| HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.
32 | 21.35
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
)
|
| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.
32 | 21.35
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams
)
|
| HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 |
8.15 | 37.78
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams
)
|
| HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 |
8.97 | 41.30
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams
)
|
| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 |
12.74 | 57.64
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 |
14.94 | 67.1
6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 |
17.34 | 77.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams
)
|
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 |
17.34 | 77.5
7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 |
28.97 | 128.18
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams
)
|
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 |
29.00 | 129.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams
)
|
<a
name=
"Inception系列"
></a>
...
...
@@ -268,16 +269,16 @@ HRNet系列模型的精度、速度指标如下表所示,更多关于该系列
Inception系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
Inception系列模型文档
](
../models/Inception.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
| GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 |
2.88 | 8.46
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
|
| Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 |
16.74 | 22.69
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams
)
|
| Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 |
18.16 | 26.73
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams
)
|
| Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 |
25.95 | 35.48
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams
)
|
| Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 |
27.37 | 39.52
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams
)
|
| Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 |
31.77 | 37.28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams
)
|
| InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 |
11.46 | 23.83
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams
)
|
| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 |
24.57 | 42.68
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
|
| GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 |
1.44 | 11.54
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams
)
|
| Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 |
8.57 | 23.02
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams
)
|
| Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 |
9.28 | 27.08
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams
)
|
| Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 |
13.25 | 36.04
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams
)
|
| Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 |
13.96 | 40.10
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams
)
|
| Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 |
16.21 | 37.86
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams
)
|
| InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 |
5.73 | 23.87
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams
)
|
| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 |
12.29 | 42.74
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams
)
|
<a
name=
"EfficientNet与ResNeXt101_wsl系列"
></a>
...
...
@@ -286,22 +287,22 @@ Inception系列模型的精度、速度指标如下表所示,更多关于该
EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
EfficientNet与ResNeXt101_wsl系列模型文档
](
../models/EfficientNet_and_ResNeXt101_wsl.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_
<br>
32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 |
29.14 | 78.44
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 |
57.55 | 152.6
6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 |
115.17 | 303.11
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 1
73.58 | 456.2
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 3
54.23 | 456.2
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
| EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.
72 | 5.1
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams
)
|
| EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 |
1.27 | 7.52
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams
)
|
| EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.
85 | 8.81
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams
)
|
| EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 |
3.43 | 11.8
4 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams
)
|
| EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 |
8.29 | 18.76
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams
)
|
| EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 1
9.51 | 29.61
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams
)
|
| EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - |
36.27 | 42
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams
)
|
| EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - |
72.35 | 64.92
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams
)
|
| EfficientNetB0_
<br>
small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.
72 | 4.65
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 |
16.48 | 88.99
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 |
36.26 | 194.3
6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 |
87.28 | 469.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams
)
|
| ResNeXt101_
<br>
32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 1
53.57 | 829.26
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
| Fix_ResNeXt101_
<br>
32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 3
13.41 | 829.26
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams
)
|
| EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.
40 | 5.33
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams
)
|
| EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 |
0.71 | 7.86
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams
)
|
| EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.
02 | 9.18
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams
)
|
| EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 |
1.88 | 12.32
4 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams
)
|
| EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 |
4.51 | 19.47
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams
)
|
| EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 1
0.51 | 30.56
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams
)
|
| EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - |
19.47 | 43.27
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams
)
|
| EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - |
38.45 | 66.66
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams
)
|
| EfficientNetB0_
<br>
small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.
40 | 4.69
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams
)
|
<a
name=
"ResNeSt与RegNet系列"
></a>
...
...
@@ -310,11 +311,11 @@ EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示
ResNeSt与RegNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
ResNeSt与RegNet系列模型文档
](
../models/ResNeSt_RegNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 |
8.68 | 26.3
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
| ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 |
10.78 | 27.5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 |
8 | 22.1
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams
)
|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 |
4.36 | 26.27
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
| ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 |
5.40 | 27.54
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 |
4.00 | 22.23
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams
)
|
<a
name=
"ViT_and_DeiT系列"
></a>
...
...
@@ -323,28 +324,30 @@ ResNeSt与RegNet系列模型的精度、速度指标如下表所示,更多关
ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考:
[
ViT_and_DeiT系列模型文档
](
../models/ViT_and_DeiT.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| ViT_small_
<br/>
patch16_224 | 0.7769 | 0.9342 | - | - | | |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch16_224 | 0.8195 | 0.9617 | - | - | | 86 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 | - | - | | |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 | - | - | | |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 | - | - | | 307 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch16_384 | 0.8513 | 0.9736 | - | - | | |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch32_384 | 0.8153 | 0.9608 | - | - | | |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
| ViT_small_
<br/>
patch16_224 | 0.7769 | 0.9342 | - | - | 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch16_224 | 0.8195 | 0.9617 | - | - | 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 | - | - | 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 | - | - | 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 | - | - | 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch16_384 | 0.8513 | 0.9736 | - | - | 174.70 | 304.12
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
| ViT_large_
<br/>
patch32_384 | 0.8153 | 0.9608 | - | - | 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | Flops(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
| DeiT_tiny_
<br>
patch16_224 | 0.718 | 0.910 | - | - |
| 5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
| DeiT_small_
<br>
patch16_224 | 0.796 | 0.949 | - | - |
| 22
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
patch16_224 | 0.817 | 0.957 | - | - |
| 86
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
patch16_384 | 0.830 | 0.962 | - | - |
| 87
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.741 | 0.918 | - | - |
| 6
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.809 | 0.953 | - | - |
| 22
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.831 | 0.964 | - | - |
| 87
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.851 | 0.973 | - | - |
| 8
8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
| DeiT_tiny_
<br>
patch16_224 | 0.718 | 0.910 | - | - |
1.07 | 5.68
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
| DeiT_small_
<br>
patch16_224 | 0.796 | 0.949 | - | - |
4.24 | 21.97
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
patch16_224 | 0.817 | 0.957 | - | - |
16.85 | 86.42
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
patch16_384 | 0.830 | 0.962 | - | - |
49.35 | 86.42
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.741 | 0.918 | - | - |
1.08 | 5.87
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.809 | 0.953 | - | - |
4.26 | 22.36
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.831 | 0.964 | - | - |
16.93 | 87.18
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.851 | 0.973 | - | - |
49.43 | 87.1
8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
<a
name=
"RepVGG系列"
></a>
...
...
@@ -353,25 +356,25 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
关于RepVGG系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
RepVGG系列模型文档
](
../models/RepVGG.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| RepVGG_A0 | 0.7131 | 0.9016 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams
)
|
| RepVGG_A1 | 0.7380 | 0.9146 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams
)
|
| RepVGG_A2 | 0.7571 | 0.9264 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams
)
|
| RepVGG_B0 | 0.7450 | 0.9213 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams
)
|
| RepVGG_B1 | 0.7773 | 0.9385 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams
)
|
| RepVGG_B2 | 0.7813 | 0.9410 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams
)
|
| RepVGG_B1g2 | 0.7732 | 0.9359 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
| RepVGG_B2g4 | 0.7881 | 0.9448 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams
)
|
| RepVGG_B3g4 | 0.7965 | 0.9485 | | |
|
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
| RepVGG_A0 | 0.7131 | 0.9016 | | |
1.36 | 8.31
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams
)
|
| RepVGG_A1 | 0.7380 | 0.9146 | | |
2.37 | 12.79
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams
)
|
| RepVGG_A2 | 0.7571 | 0.9264 | | |
5.12 | 25.50
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams
)
|
| RepVGG_B0 | 0.7450 | 0.9213 | | |
3.06 | 14.34
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams
)
|
| RepVGG_B1 | 0.7773 | 0.9385 | | |
11.82 | 51.83
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams
)
|
| RepVGG_B2 | 0.7813 | 0.9410 | | |
18.38 | 80.32
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams
)
|
| RepVGG_B1g2 | 0.7732 | 0.9359 | | |
8.82 | 41.36
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 | | |
7.31 | 36.13
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
| RepVGG_B2g4 | 0.7881 | 0.9448 | | |
11.34 | 55.78
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams
)
|
| RepVGG_B3g4 | 0.7965 | 0.9485 | | |
16.07 | 75.63
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
<a
name=
"MixNet系列"
></a>
### MixNet系列
关于MixNet系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
MixNet系列模型文档
](
../models/MixNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(M) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(M) | Params(M) | 下载地址 |
| -------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| MixNet_S | 0.7628 | 0.9299 | | | 252.977 | 4.167 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams
)
|
| MixNet_M | 0.7767 | 0.9364 | | | 357.119 | 5.065 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams
)
|
...
...
@@ -382,29 +385,29 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
关于ReXNet系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
ReXNet系列模型文档
](
../models/ReXNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746 | 0.9370 | | | 0.415 | 4.8
38
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams
)
|
| ReXNet_1_3 | 0.7913 | 0.9464 | | | 0.68
3 | 7.61
1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams
)
|
| ReXNet_1_5 | 0.8006 | 0.9512 | | | 0.90
0 | 9.791
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams
)
|
| ReXNet_2_0 | 0.8122 | 0.9536 | | | 1.56
1 | 16.449
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams
)
|
| ReXNet_3_0 | 0.8209 | 0.9612 | | | 3.44
5 | 34.83
3 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams
)
|
| ReXNet_1_0 | 0.7746 | 0.9370 | | | 0.415 | 4.8
4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams
)
|
| ReXNet_1_3 | 0.7913 | 0.9464 | | | 0.68
| 7.6
1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams
)
|
| ReXNet_1_5 | 0.8006 | 0.9512 | | | 0.90
| 9.79
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams
)
|
| ReXNet_2_0 | 0.8122 | 0.9536 | | | 1.56
| 16.45
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams
)
|
| ReXNet_3_0 | 0.8209 | 0.9612 | | | 3.44
| 34.8
3 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams
)
|
<a
name=
"SwinTransformer系列"
></a>
### SwinTransformer系列
关于SwinTransformer系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
SwinTransformer系列模型文档
](
../models/SwinTransformer.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.
5 | 28
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
)
|
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.
7 | 50
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.
4 | 88
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 4
7.1 | 88
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8487 | 0.9746 | | | 15.
4 | 88
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.8642 | 0.9807 | | | 4
7.1 | 88
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 | | | 34.
5 | 197
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 | | |
103.9 | 197
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.
35 | 28.26
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
)
|
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.
51 | 49.56
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.
13 | 87.70
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 4
4.45 | 87.70
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8487 | 0.9746 | | | 15.
13 | 87.70
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.8642 | 0.9807 | | | 4
4.45 | 87.70
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 | | | 34.
02 | 196.43
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 | | |
99.97 | 196.43
| [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[1]:基于ImageNet22k数据集预训练,然后在ImageNet1k数据集迁移学习得到。
...
...
@@ -413,13 +416,13 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
关于LeViT系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
LeViT系列模型文档
](
../models/LeViT.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(M) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(M) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| LeViT_128S | 0.7598 | 0.9269 | | |
305 | 7.8
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
| LeViT_128 | 0.7810 | 0.9371 | | |
406 | 9.2
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
| LeViT_192 | 0.7934 | 0.9446 | | |
658 | 1
1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
| LeViT_256 | 0.8085 | 0.9497 | | | 1
120 | 19
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
| LeViT_384 | 0.8191 | 0.9551 | | | 2
353 | 39
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams
)
|
| LeViT_128S | 0.7598 | 0.9269 | | |
281 | 7.42
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
| LeViT_128 | 0.7810 | 0.9371 | | |
365 | 8.87
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
| LeViT_192 | 0.7934 | 0.9446 | | |
597 | 10.6
1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
| LeViT_256 | 0.8085 | 0.9497 | | | 1
049 | 18.45
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
| LeViT_384 | 0.8191 | 0.9551 | | | 2
234 | 38.45
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams
)
|
**注**
:与Reference的精度差异源于数据预处理不同及未使用蒸馏的head作为输出。
...
...
@@ -428,14 +431,14 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
关于Twins系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
Twins系列模型文档
](
../models/Twins.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| pcpvt_small | 0.8082 | 0.9552 | | |3.
7 | 24.1
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
| pcpvt_base | 0.8242 | 0.9619 | | | 6.4
| 43.8
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
| pcpvt_large | 0.8273 | 0.9650 | | | 9.5
| 60.
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
| alt_gvt_small | 0.8140 | 0.9546 | | |2.8
| 24
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
| alt_gvt_base | 0.8294 | 0.9621 | | | 8.3
| 56
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
| alt_gvt_large | 0.8331 | 0.9642 | | | 14.8
| 99.2
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
| pcpvt_small | 0.8082 | 0.9552 | | |3.
67 | 24.06
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
| pcpvt_base | 0.8242 | 0.9619 | | | 6.4
4 | 43.83
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
| pcpvt_large | 0.8273 | 0.9650 | | | 9.5
0 | 60.9
9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
| alt_gvt_small | 0.8140 | 0.9546 | | |2.8
1 | 24.06
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
| alt_gvt_base | 0.8294 | 0.9621 | | | 8.3
4 | 56.07
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
| alt_gvt_large | 0.8331 | 0.9642 | | | 14.8
1 | 99.27
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
**注**
:与Reference的精度差异源于数据预处理不同。
...
...
@@ -444,51 +447,51 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
关于HarDNet系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
HarDNet系列模型文档
](
../models/HarDNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133 |0.8998 | | | 0.4
| 3.5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams
)
|
| HarDNet68_ds |0.7362 | 0.9152 | | | 0.
8 | 4.2
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams
)
|
| HarDNet68| 0.7546 | 0.9265 | | | 4.
3 | 17.6
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams
)
|
| HarDNet85 | 0.7744 | 0.9355 | | | 9.
1 | 36.7
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams
)
|
| HarDNet39_ds | 0.7133 |0.8998 | | | 0.4
4 | 3.51
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams
)
|
| HarDNet68_ds |0.7362 | 0.9152 | | | 0.
79 | 4.20
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams
)
|
| HarDNet68| 0.7546 | 0.9265 | | | 4.
26 | 17.58
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams
)
|
| HarDNet85 | 0.7744 | 0.9355 | | | 9.
09 | 36.69
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams
)
|
<a
name=
"DLA系列"
></a>
### DLA系列
关于 DLA系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
DLA系列模型文档
](
../models/DLA.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| DLA102 | 0.7893 |0.9452 | | | 7.
2 | 33.3
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams
)
|
| DLA102x2 |0.7885 | 0.9445 | | | 9.3
| 41.4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams
)
|
| DLA102x| 0.781 | 0.9400 | | | 5.
9 | 26.4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams
)
|
| DLA169 | 0.7809 | 0.9409 | | | 11.
6 | 53.5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams
)
|
| DLA34 | 0.7603 | 0.9298 | | | 3.
1 | 15.8
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams
)
|
| DLA46_c |0.6321 | 0.853 | | | 0.5
| 1.3
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams
)
|
| DLA60 | 0.7610 | 0.9292 | | | 4.2
| 22.0
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams
)
|
| DLA60x_c | 0.6645 | 0.8754 | | | 0.
6 | 1.
3 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams
)
|
| DLA60x | 0.7753 | 0.9378 | | | 3.5
| 17.4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams
)
|
| DLA102 | 0.7893 |0.9452 | | | 7.
19 | 33.34
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams
)
|
| DLA102x2 |0.7885 | 0.9445 | | | 9.3
4 | 41.42
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams
)
|
| DLA102x| 0.781 | 0.9400 | | | 5.
89 | 26.40
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams
)
|
| DLA169 | 0.7809 | 0.9409 | | | 11.
59 | 53.50
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams
)
|
| DLA34 | 0.7603 | 0.9298 | | | 3.
07 | 15.76
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams
)
|
| DLA46_c |0.6321 | 0.853 | | | 0.5
4 | 1.31
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams
)
|
| DLA60 | 0.7610 | 0.9292 | | | 4.2
6 | 22.08
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams
)
|
| DLA60x_c | 0.6645 | 0.8754 | | | 0.
59 | 1.3
3 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams
)
|
| DLA60x | 0.7753 | 0.9378 | | | 3.5
4 | 17.41
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams
)
|
<a
name=
"RedNet系列"
></a>
### RedNet系列
关于RedNet系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
RedNet系列模型文档
](
../models/RedNet.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| RedNet26 | 0.7595 |0.9319 | | | 1.
7 | 9.2
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams
)
|
| RedNet38 |0.7747 | 0.9356 | | | 2.
2 | 12.4
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams
)
|
| RedNet50| 0.7833 | 0.9417 | | | 2.
7 | 15.5
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams
)
|
| RedNet101 | 0.7894 | 0.9436 | | | 4.
7 | 25.7
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams
)
|
| RedNet152 | 0.7917 | 0.9440 | | | 6.
8 | 34.0
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams
)
|
| RedNet26 | 0.7595 |0.9319 | | | 1.
69 | 9.26
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams
)
|
| RedNet38 |0.7747 | 0.9356 | | | 2.
14 | 12.43
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams
)
|
| RedNet50| 0.7833 | 0.9417 | | | 2.
61 | 15.60
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams
)
|
| RedNet101 | 0.7894 | 0.9436 | | | 4.
59 | 25.76
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams
)
|
| RedNet152 | 0.7917 | 0.9440 | | | 6.
57 | 34.14
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams
)
|
<a
name=
"TNT系列"
></a>
### TNT系列
关于TNT系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
TNT系列模型文档
](
../models/TNT.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| TNT_small | 0.8121 |0.9563 | | |
5.2 | 23.
8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams
)
| |
| TNT_small | 0.8121 |0.9563 | | |
4.83 | 23.6
8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams
)
| |
**注**
:TNT模型的数据预处理部分
`NormalizeImage`
中的
`mean`
与
`std`
均为0.5。
...
...
@@ -498,13 +501,13 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
关于AlexNet、SqueezeNet系列、VGG系列、DarkNet53等模型的精度、速度指标如下表所示,更多介绍可以参考:
[
其他模型文档
](
../models/Others.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
lop
s(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | F
LOP
s(G) | Params(M) | 下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 |
1.370 | 61.09
0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams
)
|
| SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 |
1.550 | 1.240
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
|
| SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.
690 | 1.230
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
|
| VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 |
15.090 | 132.850
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams
)
|
| VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 |
22.480 | 133.030
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams
)
|
| VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 |
30.810 | 138.340
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams
)
|
| VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 |
39.130 | 143.650
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams
)
|
| DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 |
18.580 | 41.600
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
|
| AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 |
0.71 | 61.1
0 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams
)
|
| SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 |
0.78 | 1.25
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams
)
|
| SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.
35 | 1.24
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams
)
|
| VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 |
7.61 | 132.86
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams
)
|
| VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 |
11.31 | 133.05
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams
)
|
| VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 |
15.470 | 138.35
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams
)
|
| VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 |
19.63 | 143.66
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams
)
|
| DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 |
9.31 | 41.65
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
)
|
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录