diff --git a/ppcls/utils/profiler.py b/ppcls/utils/profiler.py index df49cd0d8d6a304d583094e6fe0d4baf0967e42a..a4e088c97adbbd1ee8c31333e41cdad1cda3b150 100644 --- a/ppcls/utils/profiler.py +++ b/ppcls/utils/profiler.py @@ -99,10 +99,10 @@ def add_profiler_step(options_str=None): if _profiler_options is None: _profiler_options = ProfilerOptions(options_str) - # profile 3个纬度打印性能数据 https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/performance_improving/profiling_model.html#chakanxingnengshujudetongjibiaodan - # timer_only = True 仅展示模型的吞吐量以及时间开销 - # timer_only = False 调用 summary 能够打印统计表单,通过不同角度的表单呈现性能数据 - # timer_only = False 同时产出Timeline 信息在 profiler_log目录下 + # profile : https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/performance_improving/profiling_model.html#chakanxingnengshujudetongjibiaodan + # timer_only = True only the model's throughput and time overhead are displayed + # timer_only = False calling summary can print a statistical form that presents performance data from different perspectives. + # timer_only = False the output Timeline information can be found in the profiler_log directory if _prof is None: _prof = profiler.Profiler( scheduler = (_profiler_options['batch_range'][0], _profiler_options['batch_range'][1]),