未验证 提交 4db1820d 编写于 作者: D dyning 提交者: GitHub

Merge pull request #7 from shippingwang/master

refine inference code
# 分类预测框架
## 一、简介
Paddle 的模型保存有多种不同的形式,大体可分为两类:
1. persistable 模型(fluid.save_persistabels保存的模型)
一般做为模型的 checkpoint,可以加载后重新训练。persistable 模型保存的是零散的权重文件,每个文件代表模型中的一个 Variable,这些零散的文件不包含结构信息,需要结合模型的结构一起使用。
```
resnet50-vd-persistable/
├── bn2a_branch1_mean
├── bn2a_branch1_offset
├── bn2a_branch1_scale
├── bn2a_branch1_variance
├── bn2a_branch2a_mean
├── bn2a_branch2a_offset
├── bn2a_branch2a_scale
├── ...
└── res5c_branch2c_weights
```
2. inference 模型(fluid.io.save_inference_model保存的模型)
一般是模型训练完成后保存的固化模型,用于预测部署。与 persistable 模型相比,inference 模型会额外保存模型的结构信息,用于配合权重文件构成完整的模型。如下所示,`model` 中保存的即为模型的结构信息。
```
resnet50-vd-persistable/
├── bn2a_branch1_mean
├── bn2a_branch1_offset
├── bn2a_branch1_scale
├── bn2a_branch1_variance
├── bn2a_branch2a_mean
├── bn2a_branch2a_offset
├── bn2a_branch2a_scale
├── ...
├── res5c_branch2c_weights
└── model
```
为了方便起见,paddle 在保存 inference 模型的时候也可以将所有的权重文件保存成一个`params`文件,如下所示:
```
resnet50-vd
├── model
└── params
```
在 Paddle 中训练引擎和预测引擎都支持模型的预测推理,只不过预测引擎不需要进行反向操作,因此可以进行定制型的优化(如层融合,kernel 选择等),达到低时延、高吞吐的目的。训练引擎既可以支持 persistable 模型,也可以支持 inference 模型,而预测引擎只支持 inference 模型,因此也就衍生出了三种不同的预测方式:
1. 预测引擎 + inference 模型
2. 训练引擎 + persistable 模型
3. 训练引擎 + inference 模型
不管是何种预测方式,基本都包含以下几个主要的步骤:
+ 构建引擎
+ 构建待预测数据
+ 执行预测
+ 预测结果解析
不同预测方式,主要有两方面不同:构建引擎和执行预测,以下的几个部分我们会具体介绍。
## 二、模型转换
在任务的训练阶段,通常我们会保存一些 checkpoint(persistable 模型),这些只是模型权重文件,不能直接被预测引擎直接加载预测,所以我们通常会在训练完之后,找到合适的 checkpoint 并将其转换为 inference 模型。主要分为两个步骤:1. 构建训练引擎,2. 保存 inference 模型,如下所示:
```python
import fluid
from ppcls.modeling.architectures.resnet_vd import ResNet50_vd
place = fluid.CPUPlace()
exe = fluid.Executor(place)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
image = create_input()
image = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
out = ResNet50_vd.net(input=input, class_dim=1000)
infer_prog = infer_prog.clone(for_test=True)
fluid.load(program=infer_prog, model_path=persistable 模型路径, executor=exe)
fluid.io.save_inference_model(
dirname='./output/',
feeded_var_names=[image.name],
main_program=infer_prog,
target_vars=out,
executor=exe,
model_filename='model',
params_filename='params')
```
在模型库的 `tools/export_model.py` 中提供了完整的示例,只需执行下述命令即可完成转换:
```python
python tools/export_model.py \
--m=模型名称 \
--p=persistable 模型路径 \
--o=model和params保存路径
```
## 三、预测引擎 + inference 模型预测
在模型库的 `tools/predict.py` 中提供了完整的示例,只需执行下述命令即可完成预测:
```
python ./predict.py \
-i=./test.jpeg \
-m=./resnet50-vd/model \
-p=./resnet50-vd/params \
--use_gpu=1 \
--use_tensorrt=True
```
参数说明:
+ `image_file`(简写 i):待预测的图片文件路径,如 `./test.jpeg`
+ `model_file`(简写 m):模型文件路径,如 `./resnet50-vd/model`
+ `params_file`(简写 p):权重文件路径,如 `./resnet50-vd/params`
+ `batch_size`(简写 b):批大小,如 `1`
+ `ir_optim`:是否使用 `IR` 优化,默认值:True
+ `use_tensorrt`:是否使用 TesorRT 预测引擎,默认值:True
+ `gpu_mem`: 初始分配GPU显存,以M单位
+ `use_gpu`:是否使用 GPU 预测,默认值:True
+ `enable_benchmark`:是否启用benchmark,默认值:False
+ `model_name`:模型名字
注意:
当启用benchmark时,默认开启tersorrt进行预测
构建预测引擎:
```python
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
config = AnalysisConfig(model文件路径, params文件路径)
config.enable_use_gpu(8000, 0)
config.disable_glog_info()
config.switch_ir_optim(True)
config.enable_tensorrt_engine(
precision_mode=AnalysisConfig.Precision.Float32,
max_batch_size=1)
# no zero copy方式需要去除fetch feed op
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
```
执行预测:
```python
import numpy as np
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
input = np.random.randn(1, 3, 224, 224).astype("float32")
input_tensor.reshape([1, 3, 224, 224])
input_tensor.copy_from_cpu(input)
predictor.zero_copy_run()
```
更多预测参数说明可以参考官网 [Paddle Python 预测 API](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/python_infer_cn.html)。如果需要在业务的生产环境部署,也推荐使用 [Paddel C++ 预测 API](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/native_infer.html),官网提供了丰富的预编译预测库 [Paddle C++ 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)
默认情况下,Paddle 的 wheel 包中是不包含 TensorRT 预测引擎的,如果需要使用 TensorRT 进行预测优化,需要自己编译对应的 wheel 包,编译方式可以参考 Paddle 的编译指南 [Paddle 编译](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/compile/fromsource.html)
## 四、训练引擎 + persistable 模型预测
在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成预测:
```python
python tools/infer.py \
--i=待预测的图片文件路径 \
--m=模型名称 \
--p=persistable 模型路径 \
--use_gpu=True
```
参数说明:
+ `image_file`(简写 i):待预测的图片文件路径,如 `./test.jpeg`
+ `model_file`(简写 m):模型文件路径,如 `./resnet50-vd/model`
+ `params_file`(简写 p):权重文件路径,如 `./resnet50-vd/params`
+ `use_gpu` : 是否开启GPU训练,默认值:True
训练引擎构建:
由于 persistable 模型不包含模型的结构信息,因此需要先构建出网络结构,然后 load 权重来构建训练引擎。
```python
import fluid
from ppcls.modeling.architectures.resnet_vd import ResNet50_vd
place = fluid.CPUPlace()
exe = fluid.Executor(place)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
image = create_input()
image = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
out = ResNet50_vd.net(input=input, class_dim=1000)
infer_prog = infer_prog.clone(for_test=True)
fluid.load(program=infer_prog, model_path=persistable 模型路径, executor=exe)
```
执行预测:
```python
outputs = exe.run(infer_prog,
feed={image.name: data},
fetch_list=[out.name],
return_numpy=False)
```
上述执行预测时候的参数说明可以参考官网 [fluid.Executor](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/executor_cn/Executor_cn.html)
## 五、训练引擎 + inference 模型预测
在模型库的 `tools/py_infer.py` 中提供了完整的示例,只需执行下述命令即可完成预测:
```python
python tools/py_infer.py \
--i=图片路径 \
--d=模型的存储路径 \
--m=保存的模型文件 \
--p=保存的参数文件 \
--use_gpu=True
```
+ `image_file`(简写 i):待预测的图片文件路径,如 `./test.jpeg`
+ `model_file`(简写 m):模型文件路径,如 `./resnet50_vd/model`
+ `params_file`(简写 p):权重文件路径,如 `./resnet50_vd/params`
+ `model_dir`(简写d):模型路径,如`./resent50_vd`
+ `use_gpu`:是否开启GPU,默认值:True
训练引擎构建:
由于 inference 模型已包含模型的结构信息,因此不再需要提前构建模型结构,直接 load 模型结构和权重文件来构建训练引擎。
```python
import fluid
place = fluid.CPUPlace()
exe = fluid.Executor(place)
[program, feed_names, fetch_lists] = fluid.io.load_inference_model(
模型的存储路径,
exe,
model_filename=保存的模型文件,
params_filename=保存的参数文件)
compiled_program = fluid.compiler.CompiledProgram(program)
```
> `load_inference_model` 既支持零散的权重文件集合,也支持融合后的单个权重文件。
执行预测:
```python
outputs = exe.run(compiled_program,
feed={feed_names[0]: data},
fetch_list=fetch_lists,
return_numpy=False)
```
上述执行预测时候的参数说明可以参考官网 [fluid.Executor](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/executor_cn/Executor_cn.html)
......@@ -2,7 +2,7 @@
---
请事先参考[安装指南](install.md)配置运行环境
## 1 设置环境变量
## 一、设置环境变量
**设置PYTHONPATH环境变量:**
......@@ -10,7 +10,7 @@
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
```
## 2 模型训练与评估
## 二、模型训练与评估
PaddleClas 提供模型训练与评估脚本:tools/train.py和tools/eval.py
......@@ -62,3 +62,25 @@ python eval.py \
-o pretrained_model=path_to_pretrained_models
```
您可以更改configs/eval.yaml中的architecture字段和pretrained_model字段来配置评估模型,或是通过-o参数更新配置。
## 三、模型推理
PaddlePaddle提供三种方式进行预测推理,接下来介绍如何用预测引擎进行推理:
首先,对训练好的模型进行转换
```bash
python tools/export_model.py \
-model=模型名字 \
-pretrained_model=预训练模型路径 \
-output_path=预测模型保存路径
```
之后,通过预测引擎进行推理
```bash
python tools/predict.py \
-m model文件路径 \
-p params文件路径 \
-i 图片路径 \
--use_gpu=1 \
--use_tensorrt=True
```
更多使用方法和推理方式请参考[分类预测框架](../extension/paddle_inference.md)
......@@ -12,14 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import utils
import argparse
import numpy as np
import logging
import time
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def parse_args():
def str2bool(v):
......@@ -29,26 +32,38 @@ def parse_args():
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("-m", "--model_file", type=str)
parser.add_argument("-p", "--params_file", type=str)
parser.add_argument("-b", "--max_batch_size", type=int, default=1)
parser.add_argument("-b", "--batch_size", type=int, default=1)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--enable_benchmark", type=str2bool, default=False)
parser.add_argument("--model_name", type=str)
return parser.parse_args()
def create_predictor(args):
config = AnalysisConfig(args.model_file, args.params_file)
if args.use_gpu:
config.enable_use_gpu(1000, 0)
config.enable_use_gpu(args.gpu_mem, 0)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_ir_optim(args.ir_optim) # default true
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=AnalysisConfig.Precision.Float32,
max_batch_size=args.max_batch_size)
precision_mode=AnalysisConfig.Precision.Half if args.use_fp16 else AnalysisConfig.Precision.Float32,
max_batch_size=args.batch_size)
config.enable_memory_optim()
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
return predictor
......@@ -78,25 +93,49 @@ def preprocess(fname, ops):
return data
def postprocess(outputs, topk=5):
output = outputs[0]
prob = output.as_ndarray().flatten()
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
return zip(index, prob[index])
def main():
args = parse_args()
if not args.enable_benchmark:
assert args.batch_size == 1
assert args.use_fp16 == False
else:
assert args.use_gpu == True
assert args.model_name is not None
assert args.use_tensorrt == True
# HALF precission predict only work when using tensorrt
if args.use_fp16==True:
assert args.use_tensorrt == True
operators = create_operators()
predictor = create_predictor(args)
data = preprocess(args.image_file, operators)
inputs = [PaddleTensor(data.copy())]
outputs = predictor.run(inputs)
probs = postprocess(outputs)
inputs = preprocess(args.image_file, operators)
inputs = np.expand_dims(inputs, axis=0).repeat(args.batch_size, axis=0).copy()
for idx, prob in probs:
print("class id: {:d}, probability: {:.4f}".format(idx, prob))
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
input_tensor.copy_from_cpu(inputs)
if not args.enable_benchmark:
predictor.zero_copy_run()
else:
for i in range(0,1010):
if i == 10:
start = time.time()
predictor.zero_copy_run()
end = time.time()
fp_message = "FP16" if args.use_fp16 else "FP32"
logger.info("{0}\t{1}\tbatch size: {2}\ttime(ms): {3}".format(args.model_name, fp_message, args.batch_size, end-start))
output_names = predictor.get_output_names()
output_tensor = predictor.get_output_tensor(output_names[0])
output = output_tensor.copy_to_cpu()
output = output.flatten()
cls = np.argmax(output)
score = output[cls]
logger.info("class: {0}".format(cls))
logger.info("score: {0}".format(score))
if __name__ == "__main__":
......
#!/usr/bin/env bash
python ./cpp_infer.py \
-i=./test.jpeg \
-m=./resnet50-vd/model \
-p=./resnet50-vd/params \
--use_gpu=1
python ./cpp_infer.py \
-i=./test.jpeg \
-m=./resnet50-vd/model \
-p=./resnet50-vd/params \
--use_gpu=0
python py_infer.py \
-i=./test.jpeg \
-d ./resnet50-vd/ \
-m=model -p=params \
--use_gpu=0
python py_infer.py \
-i=./test.jpeg \
-d ./resnet50-vd/ \
-m=model -p=params \
--use_gpu=1
python infer.py \
-i=./test.jpeg \
-m ResNet50_vd \
-p ./resnet50-vd-persistable/ \
--use_gpu=0
python infer.py \
-i=./test.jpeg \
-m ResNet50_vd \
-p ./resnet50-vd-persistable/ \
--use_gpu=1
python export_model.py \
-m ResNet50_vd \
-p ./resnet50-vd-persistable/ \
-o ./test/
python py_infer.py \
-i=./test.jpeg \
-d ./test/ \
-m=model \
-p=params \
--use_gpu=0
......@@ -81,5 +81,4 @@ class ToTensor(object):
def __call__(self, img):
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册