diff --git a/docs/en/tutorials/quick_start_recognition_en.md b/docs/en/tutorials/quick_start_recognition_en.md index 4d82cd2afba91fc57e632948e1697a039ecba107..32ac9d3a37a4bc4988a09085900ed2b9a5bd2e49 100644 --- a/docs/en/tutorials/quick_start_recognition_en.md +++ b/docs/en/tutorials/quick_start_recognition_en.md @@ -43,6 +43,11 @@ The detection model with the recognition inference model for the 4 directions (L | Product Recignition Model | Product Scenario | [Model Download Link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar) | [inference_product.yaml](../../../deploy/configs/inference_product.yaml) | [build_product.yaml](../../../deploy/configs/build_product.yaml) | | Vehicle ReID Model | Vehicle ReID Scenario | [Model Download Link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/vehicle_reid_ResNet50_VERIWild_v1.0_infer.tar) | - | - | +| Models Introduction | Recommended Scenarios | inference Model | Predict Config File | Config File to Build Index Database | +| ------------ | ------------- | -------- | ------- | -------- | +| Lightweight generic mainbody detection model | General Scenarios |[Model Download Link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar) | - | - | +| Lightweight generic recognition model | General Scenarios | [Model Download Link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar) | [inference_product.yaml](../../../deploy/configs/inference_product.yaml) | [build_product.yaml](../../../deploy/configs/build_product.yaml) | + Demo data in this tutorial can be downloaded here: [download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/recognition_demo_data_en_v1.1.tar). @@ -50,6 +55,7 @@ Demo data in this tutorial can be downloaded here: [download link](https://paddl **Attention** 1. If you do not have wget installed on Windows, you can download the model by copying the link into your browser and unzipping it in the appropriate folder; for Linux or macOS users, you can right-click and copy the download link to download it via the `wget` command. 2. If you want to install `wget` on macOS, you can run the following command. +3. The predict config file of the lightweight generic recognition model and the config file to build index database are used for the config of product recognition model of server-side. You can modify the path of the model to complete the index building and prediction. ```shell # install homebrew @@ -123,6 +129,13 @@ The `models` folder should have the following file structure. │ └── inference.pdmodel ``` +**Attention** +If you want to use the lightweight generic recognition model, you need to re-extract the features of the demo data and re-build the index. The way is as follows: + +```shell +python3.7 python/build_gallery.py -c configs/build_product.yaml -o Global.rec_inference_model_dir=./models/general_PPLCNet_x2_5_lite_v1.0_infer +``` + ### 2.2 Product Recognition and Retrieval diff --git a/docs/zh_CN/tutorials/quick_start_recognition.md b/docs/zh_CN/tutorials/quick_start_recognition.md index f11bef49cdf14cd0fb43fbef9a21559fdfee2f10..4a7bf5f96c5afbfc7a8738984e7bb696a606ccf5 100644 --- a/docs/zh_CN/tutorials/quick_start_recognition.md +++ b/docs/zh_CN/tutorials/quick_start_recognition.md @@ -260,12 +260,12 @@ cp recognition_demo_data_v1.1/gallery_product/data_file.txt recognition_demo_dat 然后在文件`recognition_demo_data_v1.1/gallery_product/data_file_update.txt`中添加以下的信息, ``` -gallery/anmuxi/001.jpg 安慕希酸奶 -gallery/anmuxi/002.jpg 安慕希酸奶 -gallery/anmuxi/003.jpg 安慕希酸奶 -gallery/anmuxi/004.jpg 安慕希酸奶 -gallery/anmuxi/005.jpg 安慕希酸奶 -gallery/anmuxi/006.jpg 安慕希酸奶 +gallery/anmuxi/001.jpg 安慕希酸奶 +gallery/anmuxi/002.jpg 安慕希酸奶 +gallery/anmuxi/003.jpg 安慕希酸奶 +gallery/anmuxi/004.jpg 安慕希酸奶 +gallery/anmuxi/005.jpg 安慕希酸奶 +gallery/anmuxi/006.jpg 安慕希酸奶 ``` 每一行的文本中,第一个字段表示图像的相对路径,第二个字段表示图像对应的标签信息,中间用`tab`键分隔开(注意:有些编辑器会将`tab`自动转换为`空格`,这种情况下会导致文件解析报错)。