Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
48df8e0a
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
48df8e0a
编写于
4月 14, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add effnet doc
上级
4d3bd28b
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
6 addition
and
1 deletion
+6
-1
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
+6
-1
未找到文件。
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
浏览文件 @
48df8e0a
# EfficientNet与ResNeXt101_wsl系列
## 概述
正在持续更新中......
EfficientNet是Google于2019年发布的一个基于NAS的一个轻量级网络,其中EfficientNetB7刷新了当时ImageNet-1k的分类准确率。在该文章中,作者指出,传统的提升神经网络性能的方法主要是从网络的宽度、网络的深度、以及输入图片的分辨率入手,但是作者通过实验发现,平衡这三个维度对精度和效率的提升至关重要,于是,作者通过一系列的实验中总结出了如何同时平衡这三个维度的放缩,与此同时,基于这种放缩方法,作者构建了EfficientNet系列中B1-B7共7个网络,并在同样计算量与参数量的情况下,精度达到了state-of-the-art的效果。
ResNeXt是facebook于2016年提出的一种对ResNet的改进版网络。在2019年,facebook通过弱监督学习研究了该系列网络在ImageNet上的精度上限,为了区别之前的ResNeXt网络,该系列网络的后缀为wsl,其中wsl是弱监督学习(weakly-supervised-learning)的简称。
。为了能有更强的特征提取能力,研究者将其网络宽度进一步放大,其中最大的ResNeXt101_32x48d_wsl拥有8亿个参数,将其在9.4亿的弱标签图片下训练并在ImageNet-1k上做finetune,最终在ImageNet-1k的top-1达到了85.4%,这也是迄今为止在ImageNet-1k的数据集上以224x224的分辨率下精度最高的网络。Fix-ResNeXt中,作者使用了更大的图像分辨率,针对训练图片和验证图片数据预处理不一致的情况下做了专门的Fix策略,并使得ResNeXt101_32x48d_wsl拥有了更高的精度,由于其用到了Fix策略,故命名为Fix-ResNeXt101_32x48d_wsl。
该系列模型的FLOPS、参数量以及FP32预测耗时如下图所示。
...
...
@@ -11,6 +15,7 @@
![](
../../images/models/EfficientNet.png.fp32.png
)
目前paddleclas开源的这两类模型的预训练模型一共有14个。从上图中可以看出EfficientNet系列网络优势非常明显,ResNeXt101_wsl系列模型由于用到了更多的数据,最终的精度也更高。
## 精度、FLOPS和参数量
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录