diff --git a/deploy/configs/inference_drink.yaml b/deploy/configs/inference_drink.yaml index 1c3e2c29aa8ddd5db46bbc8660c9f45942696a9c..7d316404143bb17b88e63b72486f77770476a148 100644 --- a/deploy/configs/inference_drink.yaml +++ b/deploy/configs/inference_drink.yaml @@ -55,7 +55,7 @@ IndexProcess: index_dir: "./drink_dataset_v1.0/index" data_file: "./drink_dataset_v1.0/gallery/drink_label.txt" index_operation: "new" # suported: "append", "remove", "new" - delimiter: " " + delimiter: "\t" dist_type: "IP" embedding_size: 512 batch_size: 32 diff --git a/deploy/lite_shitu/README.md b/deploy/lite_shitu/README.md index e2a03caedd0d4bf63af96d3541d1a8d021206e52..02b491977ca76e32362483222fecb8b5a2909d2b 100644 --- a/deploy/lite_shitu/README.md +++ b/deploy/lite_shitu/README.md @@ -156,13 +156,13 @@ Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括 ```shell # 当前目录为 $PaddleClas/deploy/lite_shitu # $code_path需替换成相应的运行目录,可以根据需要,将$code_path设置成需要的目录 -export $code_path=~ +export code_path=~ cd $code_path git clone https://github.com/PaddlePaddle/PaddleDetection.git # 进入PaddleDetection根目录 cd PaddleDetection # 将预训练模型导出为inference模型 -python tools/export_model.py -c configs/picodet/application/mainbody_detection/picodet_lcnet_x2_5_640_mainbody.yml -o weights=https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams export_post_process=False --output_dir=inference +python tools/export_model.py -c configs/picodet/legacy_model/application/mainbody_detection/picodet_lcnet_x2_5_640_mainbody.yml -o weights=https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams export_post_process=False --output_dir=inference # 将inference模型转化为Paddle-Lite优化模型 paddle_lite_opt --model_file=inference/picodet_lcnet_x2_5_640_mainbody/model.pdmodel --param_file=inference/picodet_lcnet_x2_5_640_mainbody/model.pdiparams --optimize_out=inference/picodet_lcnet_x2_5_640_mainbody/mainbody_det # 将转好的模型复制到lite_shitu目录下 @@ -174,11 +174,14 @@ cp $code_path/PaddleDetection/inference/picodet_lcnet_x2_5_640_mainbody/mainbody 2. 转换识别模型 ```shell +# 识别模型下载 +wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar +# 解压模型 +tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar # 转换为Paddle-Lite模型 -paddle_lite_opt --model_file=inference/inference.pdmodel --param_file=inference/inference.pdiparams --optimize_out=inference/rec +paddle_lite_opt --model_file=general_PPLCNet_x2_5_lite_v1.0_infer/inference.pdmodel --param_file=general_PPLCNet_x2_5_lite_v1.0_infer/inference.pdiparams --optimize_out=general_PPLCNet_x2_5_lite_v1.0_infer/rec # 将模型文件拷贝到lite_shitu下 -cp inference/rec.nb deploy/lite_shitu/models/ -cd deploy/lite_shitu +cp general_PPLCNet_x2_5_lite_v1.0_infer/rec.nb deploy/lite_shitu/models/ ``` **注意**:`--optimize_out` 参数为优化后模型的保存路径,无需加后缀`.nb`;`--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。 @@ -190,8 +193,11 @@ cd deploy/lite_shitu #### 2.2.1 数据及环境配置 ```shell -# 进入上级目录 -cd .. +# 进入PaddleClas根目录 +cd $PaddleClas +# 安装PaddleClas +python setup.py install +cd deploy # 下载瓶装饮料数据集 wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar rm -rf drink_dataset_v1.0.tar