提交 3919b464 编写于 作者: S shippingwang

add static debug tool

上级 d7d5353b
mode: 'train'
ARCHITECTURE:
name: "MobileNetV1"
pretrained_model: ""
model_save_dir: "./output/"
classes_num: 1000
total_images: 1281167
save_interval: 1
validate: True
valid_interval: 1
epochs: 2
topk: 5
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'Piecewise'
params:
lr: 0.1
decay_epochs: [30, 60, 90]
gamma: 0.1
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.00003
TRAIN:
batch_size: 4
num_workers: 4
file_list: "./dataset/ILSVRC2012/val_list_debug.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
VALID:
batch_size: 64
num_workers: 4
file_list: "./dataset/ILSVRC2012/val_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
DEBUG:
fake_input: '1.jpg'
repeat_times: 8
epoch_num: 1
forward: True
backward: False
fetch_list: 'ALL'
disable_random:
drop_out:
random_preprocess:
init_function:
weights: 1
bias: 0
save_report: True
print_summary: True
...@@ -24,6 +24,7 @@ import math ...@@ -24,6 +24,7 @@ import math
import random import random
import cv2 import cv2
import numpy as np import numpy as np
import os
from .autoaugment import ImageNetPolicy from .autoaugment import ImageNetPolicy
...@@ -152,11 +153,15 @@ class RandCropImage(object): ...@@ -152,11 +153,15 @@ class RandCropImage(object):
i = random.randint(0, img_w - w) i = random.randint(0, img_w - w)
j = random.randint(0, img_h - h) j = random.randint(0, img_h - h)
img = img[j:j + h, i:i + w, :]
img_adj = img[j:j + h, i:i + w, :]
if int(os.environ.get('PADDLECLAS_DEBUG')):
img_adj = img
if self.interpolation is None: if self.interpolation is None:
return cv2.resize(img, size) return cv2.resize(img_adj, size)
else: else:
return cv2.resize(img, size, interpolation=self.interpolation) return cv2.resize(img_adj, size, interpolation=self.interpolation)
class RandFlipImage(object): class RandFlipImage(object):
...@@ -173,6 +178,8 @@ class RandFlipImage(object): ...@@ -173,6 +178,8 @@ class RandFlipImage(object):
self.flip_code = flip_code self.flip_code = flip_code
def __call__(self, img): def __call__(self, img):
if int(os.environ.get('PADDLECLAS_DEBUG')):
return img
if random.randint(0, 1) == 1: if random.randint(0, 1) == 1:
return cv2.flip(img, self.flip_code) return cv2.flip(img, self.flip_code)
else: else:
......
...@@ -192,7 +192,9 @@ def partial_reader(params, full_lines, part_id=0, part_num=1, batch_size=1): ...@@ -192,7 +192,9 @@ def partial_reader(params, full_lines, part_id=0, part_num=1, batch_size=1):
delimiter = params.get('delimiter', ' ') delimiter = params.get('delimiter', ' ')
for line in full_lines: for line in full_lines:
img_path, label = line.split(delimiter) img_path, label = line.split(delimiter)
img_path = os.path.join(params['data_dir'], img_path) img_path = os.path.join(params['data_dir'], img_path)
with open(img_path, 'rb') as f: with open(img_path, 'rb') as f:
img = f.read() img = f.read()
yield (transform(img, ops), int(label)) yield (transform(img, ops), int(label))
...@@ -259,6 +261,8 @@ class Reader: ...@@ -259,6 +261,8 @@ class Reader:
self.use_gpu = config.get("use_gpu", True) self.use_gpu = config.get("use_gpu", True)
use_mix = config.get('use_mix') use_mix = config.get('use_mix')
self.params['mode'] = mode self.params['mode'] = mode
if int(os.environ.get('PADDLECLAS_DEBUG')):
self.params['debug'] = config['DEBUG']
if seed is not None: if seed is not None:
self.params['shuffle_seed'] = seed self.params['shuffle_seed'] = seed
self.batch_ops = [] self.batch_ops = []
...@@ -278,6 +282,9 @@ class Reader: ...@@ -278,6 +282,9 @@ class Reader:
def wrapper(): def wrapper():
reader = mp_reader(self.params, batch_size) reader = mp_reader(self.params, batch_size)
batch = [] batch = []
if int(os.environ.get('PADDLECLAS_DEBUG')):
fake_image_path = self.params.debug.fake_input
reader = partial_reader(self.params, [fake_image_path+' 1'] * self.params.debug.repeat_times)
for idx, sample in enumerate(reader()): for idx, sample in enumerate(reader()):
img, label = sample img, label = sample
batch.append((img, label)) batch.append((img, label))
...@@ -288,6 +295,5 @@ class Reader: ...@@ -288,6 +295,5 @@ class Reader:
return wrapper return wrapper
signal.signal(signal.SIGINT, term_mp) signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp) signal.signal(signal.SIGTERM, term_mp)
...@@ -369,6 +369,14 @@ def build(config, main_prog, startup_prog, is_train=True, is_distributed=True): ...@@ -369,6 +369,14 @@ def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
config.get('ema_decay'), thres_steps=global_steps) config.get('ema_decay'), thres_steps=global_steps)
ema.update() ema.update()
return dataloader, fetchs, ema return dataloader, fetchs, ema
if int(os.environ.get('PADDLECLAS_DEBUG')):
v = []
for var in main_prog.list_vars():
#print(var.name)
if 'velocity' not in var.name and 'conv6_weights' in var.name:
v.append(var.name)
fetchs['debug'] = v
return dataloader, fetchs return dataloader, fetchs
...@@ -425,16 +433,32 @@ def run(dataloader, ...@@ -425,16 +433,32 @@ def run(dataloader,
Returns: Returns:
""" """
fetch_list = [f[0] for f in fetchs.values()] fetch_list = []
metric_list = [f[1] for f in fetchs.values()] metric_list = []
debug_ops = 0
for k,v in fetchs.items():
if k != 'debug':
metric_list.append(v[1])
fetch_list.append(v[0])
else:
debug_ops = debug_ops + len(v)
fetch_list = fetch_list+v
for m in metric_list: for m in metric_list:
m.reset() m.reset()
batch_time = AverageMeter('elapse', '.3f') batch_time = AverageMeter('elapse', '.3f')
tic = time.time() tic = time.time()
for idx, batch in enumerate(dataloader()): for idx, batch in enumerate(dataloader()):
metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list) metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
batch_time.update(time.time() - tic) batch_time.update(time.time() - tic)
tic = time.time() tic = time.time()
logger.info("DEBUG {:s} ".format(metrics))
metrics = metrics[:-debug_ops]
for i, m in enumerate(metrics): for i, m in enumerate(metrics):
metric_list[i].update(np.mean(m), len(batch[0])) metric_list[i].update(np.mean(m), len(batch[0]))
fetchs_str = ''.join([str(m.value) + ' ' fetchs_str = ''.join([str(m.value) + ' '
...@@ -467,6 +491,8 @@ def run(dataloader, ...@@ -467,6 +491,8 @@ def run(dataloader,
logger.coloring(step_str, "PURPLE"), logger.coloring(step_str, "PURPLE"),
logger.coloring(fetchs_str, 'OKGREEN'))) logger.coloring(fetchs_str, 'OKGREEN')))
#sys.stdout.flush()
end_str = ''.join([str(m.mean) + ' ' end_str = ''.join([str(m.mean) + ' '
for m in metric_list] + [batch_time.total]) + 's' for m in metric_list] + [batch_time.total]) + 's'
if mode == 'eval': if mode == 'eval':
......
#!/usr/bin/env bash
export PYTHONPATH=$PWD:$PYTHONPATH
python -m paddle.distributed.launch \
--selected_gpus="0" \
tools/train.py \
-c ./configs/debug.yaml
...@@ -49,6 +49,12 @@ def parse_args(): ...@@ -49,6 +49,12 @@ def parse_args():
action='append', action='append',
default=[], default=[],
help='config options to be overridden') help='config options to be overridden')
parser.add_argument(
'-d',
'--debug',
default=False,
help='debug'
)
args = parser.parse_args() args = parser.parse_args()
return args return args
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册