Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
34d4eb7e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
34d4eb7e
编写于
6月 01, 2022
作者:
C
cuicheng01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update person_attribute&text_direction configs
上级
be47e28b
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
1471 addition
and
0 deletion
+1471
-0
ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
...configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
+115
-0
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
+129
-0
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
...figs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
+154
-0
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
+129
-0
ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
...s/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
+115
-0
ppcls/configs/PULC/person_attribute/search.yaml
ppcls/configs/PULC/person_attribute/search.yaml
+41
-0
ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml
...s/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml
+134
-0
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
+143
-0
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
...onfigs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
+162
-0
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml
+144
-0
ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml
...xt_direction/SwinTransformer_tiny_patch4_window7_224.yaml
+164
-0
ppcls/configs/PULC/text_direction/search.yaml
ppcls/configs/PULC/text_direction/search.yaml
+41
-0
未找到文件。
ppcls/configs/PULC/person_attribute/MobileNetV3_large_x1_0.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
5
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
20
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
MobileNetV3_large_x1_0"
pretrained
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
#clip_norm: 10
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_train_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
PPLCNet_x1_0"
pretrained
:
True
use_ssld
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_train_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
TimmAutoAugment
:
prob
:
0.8
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.4
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
1
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
DistillationModel"
class_num
:
&class_num
26
# if not null, its lengths should be same as models
pretrained_list
:
# if not null, its lengths should be same as models
freeze_params_list
:
-
True
-
False
use_sync_bn
:
True
models
:
-
Teacher
:
name
:
ResNet101_vd
class_num
:
*class_num
-
Student
:
name
:
PPLCNet_x1_0
class_num
:
*class_num
pretrained
:
True
use_ssld
:
True
infer_model_name
:
"
Student"
# loss function config for traing/eval process
Loss
:
Train
:
-
DistillationDMLLoss
:
weight
:
1.0
model_name_pairs
:
-
[
"
Student"
,
"
Teacher"
]
-
DistillationMultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
model_names
:
[
"
Student"
]
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/train_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
TimmAutoAugment
:
prob
:
0.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
PPLCNet_x1_0"
pretrained
:
True
use_ssld
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_train_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
TimmAutoAugment
:
prob
:
0.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/Res2Net200_vd_26w_4s.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
save_interval
:
5
eval_during_train
:
True
eval_interval
:
1
epochs
:
20
print_batch_step
:
20
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
192
]
save_inference_dir
:
"
./inference"
use_multilabel
:
True
# model architecture
Arch
:
name
:
"
Res2Net200_vd_26w_4s"
pretrained
:
True
class_num
:
26
# loss function config for traing/eval process
Loss
:
Train
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Eval
:
-
MultiLabelLoss
:
weight
:
1.0
weight_ratio
:
True
size_sum
:
True
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.01
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.0005
#clip_norm: 10
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_train_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
Padv2
:
size
:
[
212
,
276
]
pad_mode
:
1
fill_value
:
0
-
RandomCropImage
:
size
:
[
192
,
256
]
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
MultiLabelDataset
image_root
:
"
dataset/attribute/data/"
cls_label_path
:
"
dataset/attribute/pa100k_val_list.txt"
label_ratio
:
True
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
256
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Metric
:
Eval
:
-
ATTRMetric
:
ppcls/configs/PULC/person_attribute/search.yaml
0 → 100644
浏览文件 @
34d4eb7e
base_config_file
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_search.yaml
distill_config_file
:
ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_Distillation.yaml
gpus
:
0,1,2,3
output_dir
:
output/search_attr
search_times
:
1
search_dict
:
-
search_key
:
lrs
replace_config
:
-
Optimizer.lr.learning_rate
search_values
:
[
0.0001
,
0.005
,
0.01
,
0.02
,
0.05
]
-
search_key
:
resolutions
replace_config
:
-
DataLoader.Train.dataset.transform_ops.1.ResizeImage.size
-
DataLoader.Train.dataset.transform_ops.4.RandomCropImage.size
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.img_size
search_values
:
[[
192
,
256
]]
-
search_key
:
ra_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.prob
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
re_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.7.RandomErasing.EPSILON
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
lr_mult_list
replace_config
:
-
Arch.lr_mult_list
search_values
:
-
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
[
0.0
,
0.4
,
0.4
,
0.8
,
0.8
,
1.0
]
-
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
]
teacher
:
rm_keys
:
-
Arch.lr_mult_list
search_values
:
-
ResNet101_vd
-
ResNet50_vd
final_replace
:
Arch.lr_mult_list
:
Arch.models.1.Student.lr_mult_list
ppcls/configs/PULC/text_direction/MobileNetV3_large_x1_0.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
start_eval_epoch
:
18
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
MobileNetV3_large_x1_0
class_num
:
2
pretrained
:
True
use_sync_bn
:
True
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.13
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00002
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
512
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
8
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
18
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
80
,
160
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
PPLCNet_x1_0
class_num
:
2
pretrained
:
True
use_ssld
:
True
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.8
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00004
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
TimmAutoAugment
:
prob
:
1.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
16
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
18
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
80
,
160
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
"
DistillationModel"
class_num
:
&class_num
2
# if not null, its lengths should be same as models
pretrained_list
:
# if not null, its lengths should be same as models
freeze_params_list
:
-
True
-
False
use_sync_bn
:
True
models
:
-
Teacher
:
name
:
ResNet101_vd
class_num
:
*class_num
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
-
Student
:
name
:
PPLCNet_x1_0
class_num
:
*class_num
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
pretrained
:
True
use_ssld
:
True
infer_model_name
:
"
Student"
# loss function config for traing/eval process
Loss
:
Train
:
-
DistillationDMLLoss
:
weight
:
1.0
model_name_pairs
:
-
[
"
Student"
,
"
Teacher"
]
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.8
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00004
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
TimmAutoAugment
:
prob
:
1.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
16
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
160
,
80
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
DistillationTopkAcc
:
model_key
:
"
Student"
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_search.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
start_eval_epoch
:
18
eval_interval
:
1
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
48
,
192
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# model architecture
Arch
:
name
:
PPLCNet_x1_0
class_num
:
2
pretrained
:
True
use_ssld
:
True
stride_list
:
[
2
,
[
2
,
1
],
[
2
,
1
],
[
2
,
1
],
[
2
,
1
]]
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.5
warmup_epoch
:
5
regularizer
:
name
:
'
L2'
coeff
:
0.00004
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
48
]
-
TimmAutoAugment
:
prob
:
0.0
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
[
192
,
48
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.0
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
16
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
48
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
size
:
[
192
,
48
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/SwinTransformer_tiny_patch4_window7_224.yaml
0 → 100644
浏览文件 @
34d4eb7e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
start_eval_epoch
:
10
epochs
:
20
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
use_dali
:
False
# mixed precision training
AMP
:
scale_loss
:
128.0
use_dynamic_loss_scaling
:
True
# O1: mixed fp16
level
:
O1
# model architecture
Arch
:
name
:
SwinTransformer_tiny_patch4_window7_224
class_num
:
2
pretrained
:
True
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
no_weight_decay_name
:
absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay
:
True
lr
:
name
:
Cosine
learning_rate
:
1e-4
eta_min
:
2e-6
warmup_epoch
:
5
warmup_start_lr
:
2e-7
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
bicubic
backend
:
pil
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
8
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/text_direction/
cls_label_path
:
./dataset/text_direction/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
8
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
2
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
2
]
ppcls/configs/PULC/text_direction/search.yaml
0 → 100644
浏览文件 @
34d4eb7e
base_config_file
:
ppcls/configs/PULC/text_direction/PPLCNet_x1_0.yaml
distill_config_file
:
ppcls/configs/PULC/text_direction/PPLCNet_x1_0_distillation.yaml
gpus
:
0,1,2,3
output_dir
:
output/search_text
search_times
:
1
search_dict
:
-
search_key
:
lrs
replace_config
:
-
Optimizer.lr.learning_rate
search_values
:
[
0.1
,
0.2
,
0.3
,
0.4
,
0.5
,
0.6
,
0.7
,
0.8
]
-
search_key
:
resolutions
replace_config
:
-
DataLoader.Train.dataset.transform_ops.1.ResizeImage.size
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.img_size
-
DataLoader.Eval.dataset.transform_ops.1.ResizeImage.size
search_values
:
[[
192
,
48
],
[
180
,
60
],
[
160
,
80
]]
-
search_key
:
ra_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.prob
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
re_probs
replace_config
:
-
DataLoader.Train.dataset.transform_ops.4.RandomErasing.EPSILON
search_values
:
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
search_key
:
lr_mult_list
replace_config
:
-
Arch.lr_mult_list
search_values
:
-
[
0.0
,
0.2
,
0.4
,
0.6
,
0.8
,
1.0
]
-
[
0.0
,
0.4
,
0.4
,
0.8
,
0.8
,
1.0
]
-
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
]
teacher
:
rm_keys
:
-
Arch.lr_mult_list
search_values
:
-
ResNet101_vd
-
ResNet50_vd
final_replace
:
Arch.lr_mult_list
:
Arch.models.1.Student.lr_mult_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录