From 2fa808517de1268935d51508527cc7fbc302eeaf Mon Sep 17 00:00:00 2001
From: dongshuilong <dongshuilong@baidu.com>
Date: Mon, 31 May 2021 16:01:02 +0800
Subject: [PATCH] legendary models v0.1

---
 .../backbone/legendary_models/__init__.py     |   6 +
 ppcls/arch/backbone/legendary_models/hrnet.py | 407 ++++++++----
 .../backbone/legendary_models/inception_v3.py | 582 ++++++++++--------
 .../backbone/legendary_models/mobilenet_v1.py | 219 ++++---
 .../backbone/legendary_models/mobilenet_v3.py | 557 +++++++++++++++++
 .../arch/backbone/legendary_models/resnet.py  | 366 +++++------
 ppcls/arch/backbone/legendary_models/vgg.py   | 251 ++++----
 7 files changed, 1549 insertions(+), 839 deletions(-)
 create mode 100644 ppcls/arch/backbone/legendary_models/mobilenet_v3.py

diff --git a/ppcls/arch/backbone/legendary_models/__init__.py b/ppcls/arch/backbone/legendary_models/__init__.py
index e69de29b..1f837dac 100644
--- a/ppcls/arch/backbone/legendary_models/__init__.py
+++ b/ppcls/arch/backbone/legendary_models/__init__.py
@@ -0,0 +1,6 @@
+from .resnet import ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, ResNet18_vd, ResNet34_vd, ResNet50_vd, ResNet101_vd, ResNet152_vd
+from .hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W64_C
+from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
+from .mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
+from .inception_v3 import InceptionV3
+from .vgg import VGG11, VGG13, VGG16, VGG19
diff --git a/ppcls/arch/backbone/legendary_models/hrnet.py b/ppcls/arch/backbone/legendary_models/hrnet.py
index 8fe291e1..51ad4e4f 100644
--- a/ppcls/arch/backbone/legendary_models/hrnet.py
+++ b/ppcls/arch/backbone/legendary_models/hrnet.py
@@ -24,29 +24,40 @@ from paddle.nn.functional import upsample
 from paddle.nn.initializer import Uniform
 
 from ppcls.arch.backbone.base.theseus_layer import TheseusLayer, Identity
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
 
 MODEL_URLS = {
-    "HRNet_W18_C": "",
-    "HRNet_W30_C": "",
-    "HRNet_W32_C": "",
-    "HRNet_W40_C": "",
-    "HRNet_W44_C": "",
-    "HRNet_W48_C": "",
-    "HRNet_W60_C": "",
-    "HRNet_W64_C": "",
-    "SE_HRNet_W18_C": "",
-    "SE_HRNet_W30_C": "",
-    "SE_HRNet_W32_C": "",
-    "SE_HRNet_W40_C": "",
-    "SE_HRNet_W44_C": "",
-    "SE_HRNet_W48_C": "",
-    "SE_HRNet_W60_C": "",
-    "SE_HRNet_W64_C": "",
+    "HRNet_W18_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams",
+    "HRNet_W30_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams",
+    "HRNet_W32_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams",
+    "HRNet_W40_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams",
+    "HRNet_W44_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams",
+    "HRNet_W48_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams",
+    "HRNet_W64_C":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams"
 }
 
 __all__ = list(MODEL_URLS.keys())
 
 
+def _create_act(act):
+    if act == "hardswish":
+        return nn.Hardswish()
+    elif act == "relu":
+        return nn.ReLU()
+    elif act is None:
+        return Identity()
+    else:
+        raise RuntimeError(
+            "The activation function is not supported: {}".format(act))
+
+
 class ConvBNLayer(TheseusLayer):
     def __init__(self,
                  num_channels,
@@ -55,7 +66,7 @@ class ConvBNLayer(TheseusLayer):
                  stride=1,
                  groups=1,
                  act="relu"):
-        super(ConvBNLayer, self).__init__()
+        super().__init__()
 
         self.conv = nn.Conv2D(
             in_channels=num_channels,
@@ -65,10 +76,8 @@ class ConvBNLayer(TheseusLayer):
             padding=(filter_size - 1) // 2,
             groups=groups,
             bias_attr=False)
-        self.bn = nn.BatchNorm(
-            num_filters,
-            act=None)
-        self.act = create_act(act)
+        self.bn = nn.BatchNorm(num_filters, act=None)
+        self.act = _create_act(act)
 
     def forward(self, x):
         x = self.conv(x)
@@ -77,18 +86,6 @@ class ConvBNLayer(TheseusLayer):
         return x
 
 
-def create_act(act):
-    if act == 'hardswish':
-        return nn.Hardswish()
-    elif act == 'relu':
-        return nn.ReLU()
-    elif act is None:
-        return Identity()
-    else:
-        raise RuntimeError(
-            'The activation function is not supported: {}'.format(act))
-
-
 class BottleneckBlock(TheseusLayer):
     def __init__(self,
                  num_channels,
@@ -96,7 +93,7 @@ class BottleneckBlock(TheseusLayer):
                  has_se,
                  stride=1,
                  downsample=False):
-        super(BottleneckBlock, self).__init__()
+        super().__init__()
 
         self.has_se = has_se
         self.downsample = downsample
@@ -147,11 +144,8 @@ class BottleneckBlock(TheseusLayer):
 
 
 class BasicBlock(nn.Layer):
-    def __init__(self,
-                 num_channels,
-                 num_filters,
-                 has_se=False):
-        super(BasicBlock, self).__init__()
+    def __init__(self, num_channels, num_filters, has_se=False):
+        super().__init__()
 
         self.has_se = has_se
 
@@ -190,9 +184,9 @@ class BasicBlock(nn.Layer):
 
 class SELayer(TheseusLayer):
     def __init__(self, num_channels, num_filters, reduction_ratio):
-        super(SELayer, self).__init__()
+        super().__init__()
 
-        self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
+        self.avg_pool = nn.AdaptiveAvgPool2D(1)
 
         self._num_channels = num_channels
 
@@ -201,8 +195,7 @@ class SELayer(TheseusLayer):
         self.fc_squeeze = nn.Linear(
             num_channels,
             med_ch,
-            weight_attr=ParamAttr(
-                initializer=Uniform(-stdv, stdv)))
+            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
         self.relu = nn.ReLU()
         stdv = 1.0 / math.sqrt(med_ch * 1.0)
         self.fc_excitation = nn.Linear(
@@ -213,7 +206,7 @@ class SELayer(TheseusLayer):
 
     def forward(self, x, res_dict=None):
         residual = x
-        x = self.pool2d_gap(x)
+        x = self.avg_pool(x)
         x = paddle.squeeze(x, axis=[2, 3])
         x = self.fc_squeeze(x)
         x = self.relu(x)
@@ -225,11 +218,8 @@ class SELayer(TheseusLayer):
 
 
 class Stage(TheseusLayer):
-    def __init__(self,
-                 num_modules,
-                 num_filters,
-                 has_se=False):
-        super(Stage, self).__init__()
+    def __init__(self, num_modules, num_filters, has_se=False):
+        super().__init__()
 
         self._num_modules = num_modules
 
@@ -237,8 +227,7 @@ class Stage(TheseusLayer):
         for i in range(num_modules):
             self.stage_func_list.append(
                 HighResolutionModule(
-                    num_filters=num_filters,
-                    has_se=has_se))
+                    num_filters=num_filters, has_se=has_se))
 
     def forward(self, x, res_dict=None):
         x = x
@@ -248,10 +237,8 @@ class Stage(TheseusLayer):
 
 
 class HighResolutionModule(TheseusLayer):
-    def __init__(self,
-                 num_filters,
-                 has_se=False):
-        super(HighResolutionModule, self).__init__()
+    def __init__(self, num_filters, has_se=False):
+        super().__init__()
 
         self.basic_block_list = nn.LayerList()
 
@@ -261,11 +248,11 @@ class HighResolutionModule(TheseusLayer):
                     BasicBlock(
                         num_channels=num_filters[i],
                         num_filters=num_filters[i],
-                        has_se=has_se) for j in range(4)]))
+                        has_se=has_se) for j in range(4)
+                ]))
 
         self.fuse_func = FuseLayers(
-            in_channels=num_filters,
-            out_channels=num_filters)
+            in_channels=num_filters, out_channels=num_filters)
 
     def forward(self, x, res_dict=None):
         out = []
@@ -279,10 +266,8 @@ class HighResolutionModule(TheseusLayer):
 
 
 class FuseLayers(TheseusLayer):
-    def __init__(self,
-                 in_channels,
-                 out_channels):
-        super(FuseLayers, self).__init__()
+    def __init__(self, in_channels, out_channels):
+        super().__init__()
 
         self._actual_ch = len(in_channels)
         self._in_channels = in_channels
@@ -352,7 +337,7 @@ class LastClsOut(TheseusLayer):
                  num_channel_list,
                  has_se,
                  num_filters_list=[32, 64, 128, 256]):
-        super(LastClsOut, self).__init__()
+        super().__init__()
 
         self.func_list = nn.LayerList()
         for idx in range(len(num_channel_list)):
@@ -378,9 +363,12 @@ class HRNet(TheseusLayer):
         width: int=18. Base channel number of HRNet.
         has_se: bool=False. If 'True', add se module to HRNet.
         class_num: int=1000. Output num of last fc layer.
+    Returns:
+        model: nn.Layer. Specific HRNet model depends on args.
     """
+
     def __init__(self, width=18, has_se=False, class_num=1000):
-        super(HRNet, self).__init__()
+        super().__init__()
 
         self.width = width
         self.has_se = has_se
@@ -388,21 +376,23 @@ class HRNet(TheseusLayer):
 
         channels_2 = [self.width, self.width * 2]
         channels_3 = [self.width, self.width * 2, self.width * 4]
-        channels_4 = [self.width, self.width * 2, self.width * 4, self.width * 8]
+        channels_4 = [
+            self.width, self.width * 2, self.width * 4, self.width * 8
+        ]
 
         self.conv_layer1_1 = ConvBNLayer(
             num_channels=3,
             num_filters=64,
             filter_size=3,
             stride=2,
-            act='relu')
+            act="relu")
 
         self.conv_layer1_2 = ConvBNLayer(
             num_channels=64,
             num_filters=64,
             filter_size=3,
             stride=2,
-            act='relu')
+            act="relu")
 
         self.layer1 = nn.Sequential(*[
             BottleneckBlock(
@@ -410,48 +400,33 @@ class HRNet(TheseusLayer):
                 num_filters=64,
                 has_se=has_se,
                 stride=1,
-                downsample=True if i == 0 else False)
-            for i in range(4)
+                downsample=True if i == 0 else False) for i in range(4)
         ])
 
         self.conv_tr1_1 = ConvBNLayer(
-            num_channels=256,
-            num_filters=width,
-            filter_size=3)
+            num_channels=256, num_filters=width, filter_size=3)
         self.conv_tr1_2 = ConvBNLayer(
-            num_channels=256,
-            num_filters=width * 2,
-            filter_size=3,
-            stride=2
-        )
+            num_channels=256, num_filters=width * 2, filter_size=3, stride=2)
 
         self.st2 = Stage(
-            num_modules=1,
-            num_filters=channels_2,
-            has_se=self.has_se)
+            num_modules=1, num_filters=channels_2, has_se=self.has_se)
 
         self.conv_tr2 = ConvBNLayer(
             num_channels=width * 2,
             num_filters=width * 4,
             filter_size=3,
-            stride=2
-        )
+            stride=2)
         self.st3 = Stage(
-            num_modules=4,
-            num_filters=channels_3,
-            has_se=self.has_se)
+            num_modules=4, num_filters=channels_3, has_se=self.has_se)
 
         self.conv_tr3 = ConvBNLayer(
             num_channels=width * 4,
             num_filters=width * 8,
             filter_size=3,
-            stride=2
-        )
+            stride=2)
 
         self.st4 = Stage(
-            num_modules=3,
-            num_filters=channels_4,
-            has_se=self.has_se)
+            num_modules=3, num_filters=channels_4, has_se=self.has_se)
 
         # classification
         num_filters_list = [32, 64, 128, 256]
@@ -464,17 +439,14 @@ class HRNet(TheseusLayer):
         self.cls_head_conv_list = nn.LayerList()
         for idx in range(3):
             self.cls_head_conv_list.append(
-                    ConvBNLayer(
-                        num_channels=num_filters_list[idx] * 4,
-                        num_filters=last_num_filters[idx],
-                        filter_size=3,
-                        stride=2))
+                ConvBNLayer(
+                    num_channels=num_filters_list[idx] * 4,
+                    num_filters=last_num_filters[idx],
+                    filter_size=3,
+                    stride=2))
 
         self.conv_last = ConvBNLayer(
-            num_channels=1024,
-            num_filters=2048,
-            filter_size=1,
-            stride=1)
+            num_channels=1024, num_filters=2048, filter_size=1, stride=1)
 
         self.avg_pool = nn.AdaptiveAvgPool2D(1)
 
@@ -516,81 +488,254 @@ class HRNet(TheseusLayer):
         return y
 
 
-def HRNet_W18_C(**args):
-    model = HRNet(width=18, **args)
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+    if pretrained is False:
+        pass
+    elif pretrained is True:
+        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+    elif isinstance(pretrained, str):
+        load_dygraph_pretrain(model, pretrained)
+    else:
+        raise RuntimeError(
+            "pretrained type is not available. Please use `string` or `boolean` type."
+        )
+
+
+def HRNet_W18_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W18_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W18_C` model depends on args.
+    """
+    model = HRNet(width=18, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W18_C"], use_ssld)
     return model
 
 
-def HRNet_W30_C(**args):
-    model = HRNet(width=30, **args)
+def HRNet_W30_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W30_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W30_C` model depends on args.
+    """
+    model = HRNet(width=30, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W30_C"], use_ssld)
     return model
 
 
-def HRNet_W32_C(**args):
-    model = HRNet(width=32, **args)
+def HRNet_W32_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W32_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W32_C` model depends on args.
+    """
+    model = HRNet(width=32, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W32_C"], use_ssld)
     return model
 
 
-def HRNet_W40_C(**args):
-    model = HRNet(width=40, **args)
+def HRNet_W40_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W40_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W40_C` model depends on args.
+    """
+    model = HRNet(width=40, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W40_C"], use_ssld)
     return model
 
 
-def HRNet_W44_C(**args):
-    model = HRNet(width=44, **args)
+def HRNet_W44_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W44_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W44_C` model depends on args.
+    """
+    model = HRNet(width=44, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W44_C"], use_ssld)
     return model
 
 
-def HRNet_W48_C(**args):
-    model = HRNet(width=48, **args)
+def HRNet_W48_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W48_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W48_C` model depends on args.
+    """
+    model = HRNet(width=48, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W48_C"], use_ssld)
     return model
 
 
-def HRNet_W60_C(**args):
-    model = HRNet(width=60, **args)
+def HRNet_W60_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W60_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W60_C` model depends on args.
+    """
+    model = HRNet(width=60, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W60_C"], use_ssld)
     return model
 
 
-def HRNet_W64_C(**args):
-    model = HRNet(width=64, **args)
+def HRNet_W64_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    HRNet_W64_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `HRNet_W64_C` model depends on args.
+    """
+    model = HRNet(width=64, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W64_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W18_C(**args):
-    model = HRNet(width=18, has_se=True, **args)
+def SE_HRNet_W18_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W18_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W18_C` model depends on args.
+    """
+    model = HRNet(width=18, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W18_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W30_C(**args):
-    model = HRNet(width=30, has_se=True, **args)
+def SE_HRNet_W30_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W30_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W30_C` model depends on args.
+    """
+    model = HRNet(width=30, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W30_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W32_C(**args):
-    model = HRNet(width=32, has_se=True, **args)
+def SE_HRNet_W32_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W32_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W32_C` model depends on args.
+    """
+    model = HRNet(width=32, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W32_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W40_C(**args):
-    model = HRNet(width=40, has_se=True, **args)
+def SE_HRNet_W40_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W40_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W40_C` model depends on args.
+    """
+    model = HRNet(width=40, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W40_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W44_C(**args):
-    model = HRNet(width=44, has_se=True, **args)
+def SE_HRNet_W44_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W44_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W44_C` model depends on args.
+    """
+    model = HRNet(width=44, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W44_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W48_C(**args):
-    model = HRNet(width=48, has_se=True, **args)
+def SE_HRNet_W48_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W48_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W48_C` model depends on args.
+    """
+    model = HRNet(width=48, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W48_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W60_C(**args):
-    model = HRNet(width=60, has_se=True, **args)
+def SE_HRNet_W60_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W60_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W60_C` model depends on args.
+    """
+    model = HRNet(width=60, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W60_C"], use_ssld)
     return model
 
 
-def SE_HRNet_W64_C(**args):
-    model = HRNet(width=64, has_se=True, **args)
+def SE_HRNet_W64_C(pretrained=False, use_ssld=False, **kwargs):
+    """
+    SE_HRNet_W64_C
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `SE_HRNet_W64_C` model depends on args.
+    """
+    model = HRNet(width=64, has_se=True, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W64_C"], use_ssld)
     return model
diff --git a/ppcls/arch/backbone/legendary_models/inception_v3.py b/ppcls/arch/backbone/legendary_models/inception_v3.py
index f06c265f..b6403bbe 100644
--- a/ppcls/arch/backbone/legendary_models/inception_v3.py
+++ b/ppcls/arch/backbone/legendary_models/inception_v3.py
@@ -13,39 +13,37 @@
 # limitations under the License.
 
 from __future__ import absolute_import, division, print_function
-
+import math
 import paddle
 from paddle import ParamAttr
 import paddle.nn as nn
 from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
 from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
 from paddle.nn.initializer import Uniform
-import math
 
 from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
 from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
 
-
 MODEL_URLS = {
-    "InceptionV3": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams",
+    "InceptionV3":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams"
 }
 
-
 __all__ = MODEL_URLS.keys()
-
 '''
 InceptionV3 config: dict.
     key: inception blocks of InceptionV3.
     values: conv num in different blocks.
 '''
 NET_CONFIG = {
-    'inception_a':[[192, 256, 288], [32, 64, 64]], 
-    'inception_b':[288],   
-    'inception_c':[[768, 768, 768, 768], [128, 160, 160, 192]],
-    'inception_d':[768],   
-    'inception_e':[1280,2048]
+    "inception_a": [[192, 256, 288], [32, 64, 64]],
+    "inception_b": [288],
+    "inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]],
+    "inception_d": [768],
+    "inception_e": [1280, 2048]
 }
 
+
 class ConvBNLayer(TheseusLayer):
     def __init__(self,
                  num_channels,
@@ -55,7 +53,7 @@ class ConvBNLayer(TheseusLayer):
                  padding=0,
                  groups=1,
                  act="relu"):
-        super(ConvBNLayer, self).__init__()
+        super().__init__()
         self.act = act
         self.conv = Conv2D(
             in_channels=num_channels,
@@ -65,92 +63,100 @@ class ConvBNLayer(TheseusLayer):
             padding=padding,
             groups=groups,
             bias_attr=False)
-        self.batch_norm = BatchNorm(
-            num_filters)
+        self.bn = BatchNorm(num_filters)
         self.relu = nn.ReLU()
 
     def forward(self, x):
         x = self.conv(x)
-        x = self.batch_norm(x)
+        x = self.bn(x)
         if self.act:
             x = self.relu(x)
         return x
 
+
 class InceptionStem(TheseusLayer):
     def __init__(self):
-        super(InceptionStem, self).__init__()
-        self.conv_1a_3x3 = ConvBNLayer(num_channels=3,
-                                       num_filters=32,
-                                       filter_size=3,
-                                       stride=2,
-                                       act="relu")
-        self.conv_2a_3x3 = ConvBNLayer(num_channels=32,
-                                       num_filters=32,
-                                       filter_size=3,
-                                       stride=1,
-                                       act="relu")
-        self.conv_2b_3x3 = ConvBNLayer(num_channels=32,
-                                       num_filters=64,
-                                       filter_size=3,
-                                       padding=1,
-                                       act="relu")
-
-        self.maxpool = MaxPool2D(kernel_size=3, stride=2, padding=0)
-        self.conv_3b_1x1 = ConvBNLayer(num_channels=64,
-                                       num_filters=80,
-                                       filter_size=1,
-                                       act="relu")        
-        self.conv_4a_3x3 = ConvBNLayer(num_channels=80,
-                                       num_filters=192,
-                                       filter_size=3,
-                                       act="relu")
+        super().__init__()
+        self.conv_1a_3x3 = ConvBNLayer(
+            num_channels=3,
+            num_filters=32,
+            filter_size=3,
+            stride=2,
+            act="relu")
+        self.conv_2a_3x3 = ConvBNLayer(
+            num_channels=32,
+            num_filters=32,
+            filter_size=3,
+            stride=1,
+            act="relu")
+        self.conv_2b_3x3 = ConvBNLayer(
+            num_channels=32,
+            num_filters=64,
+            filter_size=3,
+            padding=1,
+            act="relu")
+
+        self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
+        self.conv_3b_1x1 = ConvBNLayer(
+            num_channels=64, num_filters=80, filter_size=1, act="relu")
+        self.conv_4a_3x3 = ConvBNLayer(
+            num_channels=80, num_filters=192, filter_size=3, act="relu")
+
     def forward(self, x):
         x = self.conv_1a_3x3(x)
         x = self.conv_2a_3x3(x)
         x = self.conv_2b_3x3(x)
-        x = self.maxpool(x)
+        x = self.max_pool(x)
         x = self.conv_3b_1x1(x)
         x = self.conv_4a_3x3(x)
-        x = self.maxpool(x)
+        x = self.max_pool(x)
         return x
 
-                         
+
 class InceptionA(TheseusLayer):
     def __init__(self, num_channels, pool_features):
-        super(InceptionA, self).__init__()
-        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
-                                     num_filters=64,
-                                     filter_size=1,
-                                     act="relu") 
-        self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
-                                       num_filters=48, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch5x5_2 = ConvBNLayer(num_channels=48, 
-                                       num_filters=64, 
-                                       filter_size=5, 
-                                       padding=2, 
-                                       act="relu")
-
-        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
-                                       num_filters=64, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
-                                       num_filters=96, 
-                                       filter_size=3, 
-                                       padding=1,
-                                       act="relu")
-        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
-                               num_filters=96, 
-                               filter_size=3, 
-                               padding=1,
-                               act="relu")
-        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
-        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
-                               num_filters=pool_features, 
-                               filter_size=1, 
-                               act="relu")
+        super().__init__()
+        self.branch1x1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=64,
+            filter_size=1,
+            act="relu")
+        self.branch5x5_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=48,
+            filter_size=1,
+            act="relu")
+        self.branch5x5_2 = ConvBNLayer(
+            num_channels=48,
+            num_filters=64,
+            filter_size=5,
+            padding=2,
+            act="relu")
+
+        self.branch3x3dbl_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=64,
+            filter_size=1,
+            act="relu")
+        self.branch3x3dbl_2 = ConvBNLayer(
+            num_channels=64,
+            num_filters=96,
+            filter_size=3,
+            padding=1,
+            act="relu")
+        self.branch3x3dbl_3 = ConvBNLayer(
+            num_channels=96,
+            num_filters=96,
+            filter_size=3,
+            padding=1,
+            act="relu")
+        self.branch_pool = AvgPool2D(
+            kernel_size=3, stride=1, padding=1, exclusive=False)
+        self.branch_pool_conv = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=pool_features,
+            filter_size=1,
+            act="relu")
 
     def forward(self, x):
         branch1x1 = self.branch1x1(x)
@@ -163,34 +169,39 @@ class InceptionA(TheseusLayer):
 
         branch_pool = self.branch_pool(x)
         branch_pool = self.branch_pool_conv(branch_pool)
-        x = paddle.concat([branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
+        x = paddle.concat(
+            [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
         return x
 
-    
+
 class InceptionB(TheseusLayer):
     def __init__(self, num_channels):
-        super(InceptionB, self).__init__()
-        self.branch3x3 = ConvBNLayer(num_channels=num_channels,
-                                     num_filters=384,
-                                     filter_size=3,
-                                     stride=2,
-                                     act="relu") 
-        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=64, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64, 
-                                       num_filters=96, 
-                                       filter_size=3, 
-                                       padding=1,
-                                       act="relu")
-        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96, 
-                                       num_filters=96, 
-                                       filter_size=3,
-                                       stride=2,
-                                       act="relu")
+        super().__init__()
+        self.branch3x3 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=384,
+            filter_size=3,
+            stride=2,
+            act="relu")
+        self.branch3x3dbl_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=64,
+            filter_size=1,
+            act="relu")
+        self.branch3x3dbl_2 = ConvBNLayer(
+            num_channels=64,
+            num_filters=96,
+            filter_size=3,
+            padding=1,
+            act="relu")
+        self.branch3x3dbl_3 = ConvBNLayer(
+            num_channels=96,
+            num_filters=96,
+            filter_size=3,
+            stride=2,
+            act="relu")
         self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
-        
+
     def forward(self, x):
         branch3x3 = self.branch3x3(x)
 
@@ -204,64 +215,75 @@ class InceptionB(TheseusLayer):
 
         return x
 
+
 class InceptionC(TheseusLayer):
     def __init__(self, num_channels, channels_7x7):
-        super(InceptionC, self).__init__()
-        self.branch1x1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=192, 
-                                       filter_size=1, 
-                                       act="relu")
-
-
-        self.branch7x7_1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=channels_7x7, 
-                                       filter_size=1, 
-                                       stride=1,
-                                       act="relu")
-        self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
-                                       num_filters=channels_7x7, 
-                                       filter_size=(1, 7), 
-                                       stride=1,
-                                       padding=(0, 3),
-                                       act="relu")
-        self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
-                                       num_filters=192, 
-                                       filter_size=(7, 1), 
-                                       stride=1,
-                                       padding=(3, 0),
-                                       act="relu")
-        
-        self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=channels_7x7, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,  
-                                       num_filters=channels_7x7, 
-                                       filter_size=(7, 1), 
-                                       padding = (3, 0),
-                                       act="relu")
-        self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7, 
-                                       num_filters=channels_7x7, 
-                                       filter_size=(1, 7), 
-                                       padding = (0, 3),
-                                       act="relu")
-        self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,  
-                                       num_filters=channels_7x7, 
-                                       filter_size=(7, 1), 
-                                       padding = (3, 0),
-                                       act="relu")
-        self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7, 
-                                       num_filters=192, 
-                                       filter_size=(1, 7), 
-                                       padding = (0, 3),
-                                       act="relu")
-       
-        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
-        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
-                                       num_filters=192, 
-                                       filter_size=1, 
-                                       act="relu")
-        
+        super().__init__()
+        self.branch1x1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=192,
+            filter_size=1,
+            act="relu")
+
+        self.branch7x7_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=channels_7x7,
+            filter_size=1,
+            stride=1,
+            act="relu")
+        self.branch7x7_2 = ConvBNLayer(
+            num_channels=channels_7x7,
+            num_filters=channels_7x7,
+            filter_size=(1, 7),
+            stride=1,
+            padding=(0, 3),
+            act="relu")
+        self.branch7x7_3 = ConvBNLayer(
+            num_channels=channels_7x7,
+            num_filters=192,
+            filter_size=(7, 1),
+            stride=1,
+            padding=(3, 0),
+            act="relu")
+
+        self.branch7x7dbl_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=channels_7x7,
+            filter_size=1,
+            act="relu")
+        self.branch7x7dbl_2 = ConvBNLayer(
+            num_channels=channels_7x7,
+            num_filters=channels_7x7,
+            filter_size=(7, 1),
+            padding=(3, 0),
+            act="relu")
+        self.branch7x7dbl_3 = ConvBNLayer(
+            num_channels=channels_7x7,
+            num_filters=channels_7x7,
+            filter_size=(1, 7),
+            padding=(0, 3),
+            act="relu")
+        self.branch7x7dbl_4 = ConvBNLayer(
+            num_channels=channels_7x7,
+            num_filters=channels_7x7,
+            filter_size=(7, 1),
+            padding=(3, 0),
+            act="relu")
+        self.branch7x7dbl_5 = ConvBNLayer(
+            num_channels=channels_7x7,
+            num_filters=192,
+            filter_size=(1, 7),
+            padding=(0, 3),
+            act="relu")
+
+        self.branch_pool = AvgPool2D(
+            kernel_size=3, stride=1, padding=1, exclusive=False)
+        self.branch_pool_conv = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=192,
+            filter_size=1,
+            act="relu")
+
     def forward(self, x):
         branch1x1 = self.branch1x1(x)
 
@@ -278,41 +300,49 @@ class InceptionC(TheseusLayer):
         branch_pool = self.branch_pool(x)
         branch_pool = self.branch_pool_conv(branch_pool)
 
-        x = paddle.concat([branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
-        
+        x = paddle.concat(
+            [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
+
         return x
-    
+
+
 class InceptionD(TheseusLayer):
     def __init__(self, num_channels):
-        super(InceptionD, self).__init__()
-        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=192, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch3x3_2 = ConvBNLayer(num_channels=192, 
-                                       num_filters=320, 
-                                       filter_size=3, 
-                                       stride=2,
-                                       act="relu")
-        self.branch7x7x3_1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=192, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch7x7x3_2 = ConvBNLayer(num_channels=192,
-                                       num_filters=192, 
-                                       filter_size=(1, 7), 
-                                       padding=(0, 3),
-                                       act="relu")
-        self.branch7x7x3_3 = ConvBNLayer(num_channels=192, 
-                                       num_filters=192, 
-                                       filter_size=(7, 1), 
-                                       padding=(3, 0),
-                                       act="relu")
-        self.branch7x7x3_4 = ConvBNLayer(num_channels=192,  
-                                       num_filters=192, 
-                                       filter_size=3, 
-                                       stride=2,
-                                       act="relu")
+        super().__init__()
+        self.branch3x3_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=192,
+            filter_size=1,
+            act="relu")
+        self.branch3x3_2 = ConvBNLayer(
+            num_channels=192,
+            num_filters=320,
+            filter_size=3,
+            stride=2,
+            act="relu")
+        self.branch7x7x3_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=192,
+            filter_size=1,
+            act="relu")
+        self.branch7x7x3_2 = ConvBNLayer(
+            num_channels=192,
+            num_filters=192,
+            filter_size=(1, 7),
+            padding=(0, 3),
+            act="relu")
+        self.branch7x7x3_3 = ConvBNLayer(
+            num_channels=192,
+            num_filters=192,
+            filter_size=(7, 1),
+            padding=(3, 0),
+            act="relu")
+        self.branch7x7x3_4 = ConvBNLayer(
+            num_channels=192,
+            num_filters=192,
+            filter_size=3,
+            stride=2,
+            act="relu")
         self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
 
     def forward(self, x):
@@ -325,56 +355,68 @@ class InceptionD(TheseusLayer):
         branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
 
         branch_pool = self.branch_pool(x)
-        
+
         x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
         return x
-    
+
+
 class InceptionE(TheseusLayer):
     def __init__(self, num_channels):
-        super(InceptionE, self).__init__()
-        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
-                                       num_filters=320, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
-                                       num_filters=384, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch3x3_2a = ConvBNLayer(num_channels=384, 
-                                       num_filters=384, 
-                                       filter_size=(1, 3), 
-                                       padding=(0, 1),
-                                       act="relu")
-        self.branch3x3_2b = ConvBNLayer(num_channels=384, 
-                                       num_filters=384, 
-                                       filter_size=(3, 1), 
-                                       padding=(1, 0),
-                                       act="relu")
-        
-        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=448, 
-                                       filter_size=1, 
-                                       act="relu")
-        self.branch3x3dbl_2 = ConvBNLayer(num_channels=448, 
-                                       num_filters=384, 
-                                       filter_size=3, 
-                                       padding=1,
-                                       act="relu")
-        self.branch3x3dbl_3a = ConvBNLayer(num_channels=384,
-                                       num_filters=384, 
-                                       filter_size=(1, 3), 
-                                       padding=(0, 1),
-                                       act="relu")
-        self.branch3x3dbl_3b = ConvBNLayer(num_channels=384,
-                                       num_filters=384, 
-                                       filter_size=(3, 1), 
-                                       padding=(1, 0),
-                                       act="relu")
-        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
-        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels, 
-                                       num_filters=192, 
-                                       filter_size=1, 
-                                       act="relu")
+        super().__init__()
+        self.branch1x1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=320,
+            filter_size=1,
+            act="relu")
+        self.branch3x3_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=384,
+            filter_size=1,
+            act="relu")
+        self.branch3x3_2a = ConvBNLayer(
+            num_channels=384,
+            num_filters=384,
+            filter_size=(1, 3),
+            padding=(0, 1),
+            act="relu")
+        self.branch3x3_2b = ConvBNLayer(
+            num_channels=384,
+            num_filters=384,
+            filter_size=(3, 1),
+            padding=(1, 0),
+            act="relu")
+
+        self.branch3x3dbl_1 = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=448,
+            filter_size=1,
+            act="relu")
+        self.branch3x3dbl_2 = ConvBNLayer(
+            num_channels=448,
+            num_filters=384,
+            filter_size=3,
+            padding=1,
+            act="relu")
+        self.branch3x3dbl_3a = ConvBNLayer(
+            num_channels=384,
+            num_filters=384,
+            filter_size=(1, 3),
+            padding=(0, 1),
+            act="relu")
+        self.branch3x3dbl_3b = ConvBNLayer(
+            num_channels=384,
+            num_filters=384,
+            filter_size=(3, 1),
+            padding=(1, 0),
+            act="relu")
+        self.branch_pool = AvgPool2D(
+            kernel_size=3, stride=1, padding=1, exclusive=False)
+        self.branch_pool_conv = ConvBNLayer(
+            num_channels=num_channels,
+            num_filters=192,
+            filter_size=1,
+            act="relu")
+
     def forward(self, x):
         branch1x1 = self.branch1x1(x)
 
@@ -396,8 +438,9 @@ class InceptionE(TheseusLayer):
         branch_pool = self.branch_pool(x)
         branch_pool = self.branch_pool_conv(branch_pool)
 
-        x = paddle.concat([branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
-        return x   
+        x = paddle.concat(
+            [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
+        return x
 
 
 class Inception_V3(TheseusLayer):
@@ -410,25 +453,21 @@ class Inception_V3(TheseusLayer):
     Returns:
         model: nn.Layer. Specific Inception_V3 model depends on args.
     """
-    def __init__(self, 
-                 config, 
-                 class_num=1000, 
-                 pretrained=False,
-                 **kwargs):
-        super(Inception_V3, self).__init__()
-
-        self.inception_a_list = config['inception_a']
-        self.inception_c_list = config['inception_c']
-        self.inception_b_list = config['inception_b']
-        self.inception_d_list = config['inception_d']
-        self.inception_e_list = config ['inception_e']
-        self.pretrained = pretrained   
+
+    def __init__(self, config, class_num=1000):
+        super().__init__()
+
+        self.inception_a_list = config["inception_a"]
+        self.inception_c_list = config["inception_c"]
+        self.inception_b_list = config["inception_b"]
+        self.inception_d_list = config["inception_d"]
+        self.inception_e_list = config["inception_e"]
 
         self.inception_stem = InceptionStem()
 
         self.inception_block_list = nn.LayerList()
         for i in range(len(self.inception_a_list[0])):
-            inception_a = InceptionA(self.inception_a_list[0][i], 
+            inception_a = InceptionA(self.inception_a_list[0][i],
                                      self.inception_a_list[1][i])
             self.inception_block_list.append(inception_a)
 
@@ -437,7 +476,7 @@ class Inception_V3(TheseusLayer):
             self.inception_block_list.append(inception_b)
 
         for i in range(len(self.inception_c_list[0])):
-            inception_c = InceptionC(self.inception_c_list[0][i], 
+            inception_c = InceptionC(self.inception_c_list[0][i],
                                      self.inception_c_list[1][i])
             self.inception_block_list.append(inception_c)
 
@@ -448,21 +487,20 @@ class Inception_V3(TheseusLayer):
         for i in range(len(self.inception_e_list)):
             inception_e = InceptionE(self.inception_e_list[i])
             self.inception_block_list.append(inception_e)
- 
+
         self.avg_pool = AdaptiveAvgPool2D(1)
         self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
         stdv = 1.0 / math.sqrt(2048 * 1.0)
         self.fc = Linear(
             2048,
             class_num,
-            weight_attr=ParamAttr(
-                initializer=Uniform(-stdv, stdv)),
+            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
             bias_attr=ParamAttr())
 
     def forward(self, x):
         x = self.inception_stem(x)
         for inception_block in self.inception_block_list:
-           x = inception_block(x)
+            x = inception_block(x)
         x = self.avg_pool(x)
         x = paddle.reshape(x, shape=[-1, 2048])
         x = self.dropout(x)
@@ -470,25 +508,29 @@ class Inception_V3(TheseusLayer):
         return x
 
 
-def InceptionV3(**kwargs):
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+    if pretrained is False:
+        pass
+    elif pretrained is True:
+        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+    elif isinstance(pretrained, str):
+        load_dygraph_pretrain(model, pretrained)
+    else:
+        raise RuntimeError(
+            "pretrained type is not available. Please use `string` or `boolean` type."
+        )
+
+
+def InceptionV3(pretrained=False, use_ssld=False, **kwargs):
     """
     InceptionV3
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
+                    if str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `InceptionV3` model 
     """
     model = Inception_V3(NET_CONFIG, **kwargs)
-    
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["InceptionV3"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    _load_pretrained(pretrained, model, MODEL_URLS["InceptionV3"], use_ssld)
     return model
-
diff --git a/ppcls/arch/backbone/legendary_models/mobilenet_v1.py b/ppcls/arch/backbone/legendary_models/mobilenet_v1.py
index cf57f988..3a14dc81 100644
--- a/ppcls/arch/backbone/legendary_models/mobilenet_v1.py
+++ b/ppcls/arch/backbone/legendary_models/mobilenet_v1.py
@@ -14,8 +14,6 @@
 
 from __future__ import absolute_import, division, print_function
 
-import numpy as np
-import paddle
 from paddle import ParamAttr
 import paddle.nn as nn
 from paddle.nn import Conv2D, BatchNorm, Linear, ReLU, Flatten
@@ -23,19 +21,22 @@ from paddle.nn import AdaptiveAvgPool2D
 from paddle.nn.initializer import KaimingNormal
 
 from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
-from ppcls.utils.save_load import load_dygraph_pretrain_from, load_dygraph_pretrain_from_url
-
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
 
 MODEL_URLS = {
-    "MobileNetV1_x0_25": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams",
-    "MobileNetV1_x0_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams",
-    "MobileNetV1_x0_75": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams",
-    "MobileNetV1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams",
+    "MobileNetV1_x0_25":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams",
+    "MobileNetV1_x0_5":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams",
+    "MobileNetV1_x0_75":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams",
+    "MobileNetV1":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams"
 }
 
 __all__ = MODEL_URLS.keys()
-    
-    
+
+
 class ConvBNLayer(TheseusLayer):
     def __init__(self,
                  num_channels,
@@ -44,7 +45,7 @@ class ConvBNLayer(TheseusLayer):
                  stride,
                  padding,
                  num_groups=1):
-        super(ConvBNLayer, self).__init__()
+        super().__init__()
 
         self.conv = Conv2D(
             in_channels=num_channels,
@@ -55,9 +56,7 @@ class ConvBNLayer(TheseusLayer):
             groups=num_groups,
             weight_attr=ParamAttr(initializer=KaimingNormal()),
             bias_attr=False)
-
         self.bn = BatchNorm(num_filters)
-        
         self.relu = ReLU()
 
     def forward(self, x):
@@ -68,14 +67,9 @@ class ConvBNLayer(TheseusLayer):
 
 
 class DepthwiseSeparable(TheseusLayer):
-    def __init__(self,
-                 num_channels,
-                 num_filters1,
-                 num_filters2,
-                 num_groups,
-                 stride,
-                 scale):
-        super(DepthwiseSeparable, self).__init__()
+    def __init__(self, num_channels, num_filters1, num_filters2, num_groups,
+                 stride, scale):
+        super().__init__()
 
         self.depthwise_conv = ConvBNLayer(
             num_channels=num_channels,
@@ -99,10 +93,18 @@ class DepthwiseSeparable(TheseusLayer):
 
 
 class MobileNet(TheseusLayer):
-    def __init__(self, scale=1.0, class_num=1000, pretrained=False):
-        super(MobileNet, self).__init__()
+    """
+    MobileNet
+    Args:
+        scale: float=1.0. The coefficient that controls the size of network parameters. 
+        class_num: int=1000. The number of classes.
+    Returns:
+        model: nn.Layer. Specific MobileNet model depends on args.
+    """
+
+    def __init__(self, scale=1.0, class_num=1000):
+        super().__init__()
         self.scale = scale
-        self.pretrained = pretrained
 
         self.conv = ConvBNLayer(
             num_channels=3,
@@ -110,30 +112,31 @@ class MobileNet(TheseusLayer):
             num_filters=int(32 * scale),
             stride=2,
             padding=1)
-        
+
         #num_channels, num_filters1, num_filters2, num_groups, stride
-        self.cfg = [[int(32 * scale),   32,   64,   32,   1],
-                    [int(64 * scale),   64,   128,  64,   2],
-                    [int(128 * scale),  128,  128,  128,  1],
-                    [int(128 * scale),  128,  256,  128,  2],
-                    [int(256 * scale),  256,  256,  256,  1],
-                    [int(256 * scale),  256,  512,  256,  2],
-                    [int(512 * scale),  512,  512,  512,  1],
-                    [int(512 * scale),  512,  512,  512,  1],
-                    [int(512 * scale),  512,  512,  512,  1],
-                    [int(512 * scale),  512,  512,  512,  1],
-                    [int(512 * scale),  512,  512,  512,  1],
-                    [int(512 * scale),  512,  1024, 512,  2],
+        self.cfg = [[int(32 * scale), 32, 64, 32, 1],
+                    [int(64 * scale), 64, 128, 64, 2],
+                    [int(128 * scale), 128, 128, 128, 1],
+                    [int(128 * scale), 128, 256, 128, 2],
+                    [int(256 * scale), 256, 256, 256, 1],
+                    [int(256 * scale), 256, 512, 256, 2],
+                    [int(512 * scale), 512, 512, 512, 1],
+                    [int(512 * scale), 512, 512, 512, 1],
+                    [int(512 * scale), 512, 512, 512, 1],
+                    [int(512 * scale), 512, 512, 512, 1],
+                    [int(512 * scale), 512, 512, 512, 1],
+                    [int(512 * scale), 512, 1024, 512, 2],
                     [int(1024 * scale), 1024, 1024, 1024, 1]]
-        
+
         self.blocks = nn.Sequential(*[
-                    DepthwiseSeparable(
-                            num_channels=params[0],
-                            num_filters1=params[1],
-                            num_filters2=params[2],
-                            num_groups=params[3],
-                            stride=params[4],
-                            scale=scale) for params in self.cfg])
+            DepthwiseSeparable(
+                num_channels=params[0],
+                num_filters1=params[1],
+                num_filters2=params[2],
+                num_groups=params[3],
+                stride=params[4],
+                scale=scale) for params in self.cfg
+        ])
 
         self.avg_pool = AdaptiveAvgPool2D(1)
         self.flatten = Flatten(start_axis=1, stop_axis=-1)
@@ -142,7 +145,7 @@ class MobileNet(TheseusLayer):
             int(1024 * scale),
             class_num,
             weight_attr=ParamAttr(initializer=KaimingNormal()))
-        
+
     def forward(self, x):
         x = self.conv(x)
         x = self.blocks(x)
@@ -152,91 +155,77 @@ class MobileNet(TheseusLayer):
         return x
 
 
-def MobileNetV1_x0_25(**args):
-    """
-        MobileNetV1_x0_25
-        Args:
-            pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
-            kwargs: 
-                class_num: int=1000. Output dim of last fc layer.
-        Returns:
-            model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
-    """
-    model = MobileNet(scale=0.25, **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["MobileNetV1_x0_25"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+    if pretrained is False:
+        pass
+    elif pretrained is True:
+        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+    elif isinstance(pretrained, str):
+        load_dygraph_pretrain(model, pretrained)
     else:
         raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
-    return model
+            "pretrained type is not available. Please use `string` or `boolean` type."
+        )
 
 
-def MobileNetV1_x0_5(**args):
+def MobileNetV1_x0_25(pretrained=False, use_ssld=False, **kwargs):
     """
-        MobileNetV1_x0_5
-        Args:
-            pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
-            kwargs: 
-                class_num: int=1000. Output dim of last fc layer.
-        Returns:
-            model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
+    MobileNetV1_x0_25
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
     """
-    model = MobileNet(scale=0.5, **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["MobileNetV1_x0_5"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = MobileNet(scale=0.25, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_25"],
+                     use_ssld)
     return model
 
 
-def MobileNetV1_x0_75(**args):
+def MobileNetV1_x0_5(pretrained=False, use_ssld=False, **kwargs):
     """
-        MobileNetV1_x0_75
-        Args:
-            pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
-            kwargs: 
-                class_num: int=1000. Output dim of last fc layer.
-        Returns:
-            model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
+    MobileNetV1_x0_5
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
     """
-    model = MobileNet(scale=0.75, **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["MobileNetV1_x0_75"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = MobileNet(scale=0.5, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_5"],
+                     use_ssld)
     return model
 
 
-def MobileNetV1(**args):
+def MobileNetV1_x0_75(pretrained=False, use_ssld=False, **kwargs):
     """
-        MobileNetV1
-        Args:
-            pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
-            kwargs: 
-                class_num: int=1000. Output dim of last fc layer.
-        Returns:
-            model: nn.Layer. Specific `MobileNetV1` model depends on args.
+    MobileNetV1_x0_75
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
     """
-    model = MobileNet(scale=1.0, **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["MobileNetV1"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = MobileNet(scale=0.75, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_75"],
+                     use_ssld)
     return model
 
 
+def MobileNetV1(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV1
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV1` model depends on args.
+    """
+    model = MobileNet(scale=1.0, **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1"], use_ssld)
+    return model
diff --git a/ppcls/arch/backbone/legendary_models/mobilenet_v3.py b/ppcls/arch/backbone/legendary_models/mobilenet_v3.py
new file mode 100644
index 00000000..aff69bca
--- /dev/null
+++ b/ppcls/arch/backbone/legendary_models/mobilenet_v3.py
@@ -0,0 +1,557 @@
+# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import, division, print_function
+
+import paddle
+import paddle.nn as nn
+from paddle import ParamAttr
+from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
+from paddle.regularizer import L2Decay
+from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
+
+MODEL_URLS = {
+    "MobileNetV3_small_x0_35":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams",
+    "MobileNetV3_small_x0_5":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams",
+    "MobileNetV3_small_x0_75":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams",
+    "MobileNetV3_small_x1_0":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams",
+    "MobileNetV3_small_x1_25":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams",
+    "MobileNetV3_large_x0_35":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams",
+    "MobileNetV3_large_x0_5":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams",
+    "MobileNetV3_large_x0_75":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams",
+    "MobileNetV3_large_x1_0":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams",
+    "MobileNetV3_large_x1_25":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams",
+}
+
+__all__ = MODEL_URLS.keys()
+
+# "large", "small" is just for MobinetV3_large, MobileNetV3_small respectively.
+# The type of "large" or "small" config is a list. Each element(list) represents a depthwise block, which is composed of k, exp, se, act, s.
+# k: kernel_size
+# exp: middle channel number in depthwise block
+# c: output channel number in depthwise block
+# se: whether to use SE block
+# act: which activation to use
+# s: stride in depthwise block
+NET_CONFIG = {
+    "large": [
+        # k, exp, c, se, act, s
+        [3, 16, 16, False, "relu", 1],
+        [3, 64, 24, False, "relu", 2],
+        [3, 72, 24, False, "relu", 1],
+        [5, 72, 40, True, "relu", 2],
+        [5, 120, 40, True, "relu", 1],
+        [5, 120, 40, True, "relu", 1],
+        [3, 240, 80, False, "hardswish", 2],
+        [3, 200, 80, False, "hardswish", 1],
+        [3, 184, 80, False, "hardswish", 1],
+        [3, 184, 80, False, "hardswish", 1],
+        [3, 480, 112, True, "hardswish", 1],
+        [3, 672, 112, True, "hardswish", 1],
+        [5, 672, 160, True, "hardswish", 2],
+        [5, 960, 160, True, "hardswish", 1],
+        [5, 960, 160, True, "hardswish", 1],
+    ],
+    "small": [
+        # k, exp, c, se, act, s
+        [3, 16, 16, True, "relu", 2],
+        [3, 72, 24, False, "relu", 2],
+        [3, 88, 24, False, "relu", 1],
+        [5, 96, 40, True, "hardswish", 2],
+        [5, 240, 40, True, "hardswish", 1],
+        [5, 240, 40, True, "hardswish", 1],
+        [5, 120, 48, True, "hardswish", 1],
+        [5, 144, 48, True, "hardswish", 1],
+        [5, 288, 96, True, "hardswish", 2],
+        [5, 576, 96, True, "hardswish", 1],
+        [5, 576, 96, True, "hardswish", 1],
+    ]
+}
+# first conv output channel number in MobileNetV3
+STEM_CONV_NUMBER = 16
+# last second conv output channel for "small"
+LAST_SECOND_CONV_SMALL = 576
+# last second conv output channel for "large"
+LAST_SECOND_CONV_LARGE = 960
+# last conv output channel number for "large" and "small"
+LAST_CONV = 1280
+
+
+def _make_divisible(v, divisor=8, min_value=None):
+    if min_value is None:
+        min_value = divisor
+    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
+    if new_v < 0.9 * v:
+        new_v += divisor
+    return new_v
+
+
+def _create_act(act):
+    if act == "hardswish":
+        return nn.Hardswish()
+    elif act == "relu":
+        return nn.ReLU()
+    elif act is None:
+        return None
+    else:
+        raise RuntimeError(
+            "The activation function is not supported: {}".format(act))
+
+
+class MobileNetV3(TheseusLayer):
+    """
+    MobileNetV3
+    Args:
+        config: list. MobileNetV3 depthwise blocks config.
+        scale: float=1.0. The coefficient that controls the size of network parameters. 
+        class_num: int=1000. The number of classes.
+        inplanes: int=16. The output channel number of first convolution layer.
+        class_squeeze: int=960. The output channel number of penultimate convolution layer. 
+        class_expand: int=1280. The output channel number of last convolution layer. 
+        dropout_prob: float=0.2.  Probability of setting units to zero.
+    Returns:
+        model: nn.Layer. Specific MobileNetV3 model depends on args.
+    """
+
+    def __init__(self,
+                 config,
+                 scale=1.0,
+                 class_num=1000,
+                 inplanes=STEM_CONV_NUMBER,
+                 class_squeeze=LAST_SECOND_CONV_LARGE,
+                 class_expand=LAST_CONV,
+                 dropout_prob=0.2):
+        super().__init__()
+
+        self.cfg = config
+        self.scale = scale
+        self.inplanes = inplanes
+        self.class_squeeze = class_squeeze
+        self.class_expand = class_expand
+        self.class_num = class_num
+
+        self.conv = ConvBNLayer(
+            in_c=3,
+            out_c=_make_divisible(self.inplanes * self.scale),
+            filter_size=3,
+            stride=2,
+            padding=1,
+            num_groups=1,
+            if_act=True,
+            act="hardswish")
+
+        self.blocks = nn.Sequential(*[
+            ResidualUnit(
+                in_c=_make_divisible(self.inplanes * self.scale if i == 0 else
+                                     self.cfg[i - 1][2] * self.scale),
+                mid_c=_make_divisible(self.scale * exp),
+                out_c=_make_divisible(self.scale * c),
+                filter_size=k,
+                stride=s,
+                use_se=se,
+                act=act) for i, (k, exp, c, se, act, s) in enumerate(self.cfg)
+        ])
+
+        self.last_second_conv = ConvBNLayer(
+            in_c=_make_divisible(self.cfg[-1][2] * self.scale),
+            out_c=_make_divisible(self.scale * self.class_squeeze),
+            filter_size=1,
+            stride=1,
+            padding=0,
+            num_groups=1,
+            if_act=True,
+            act="hardswish")
+
+        self.avg_pool = AdaptiveAvgPool2D(1)
+
+        self.last_conv = Conv2D(
+            in_channels=_make_divisible(self.scale * self.class_squeeze),
+            out_channels=self.class_expand,
+            kernel_size=1,
+            stride=1,
+            padding=0,
+            bias_attr=False)
+
+        self.hardswish = nn.Hardswish()
+        self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
+        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
+
+        self.fc = Linear(self.class_expand, class_num)
+
+    def forward(self, x):
+        x = self.conv(x)
+        x = self.blocks(x)
+        x = self.last_second_conv(x)
+        x = self.avg_pool(x)
+        x = self.last_conv(x)
+        x = self.hardswish(x)
+        x = self.dropout(x)
+        x = self.flatten(x)
+        x = self.fc(x)
+
+        return x
+
+
+class ConvBNLayer(TheseusLayer):
+    def __init__(self,
+                 in_c,
+                 out_c,
+                 filter_size,
+                 stride,
+                 padding,
+                 num_groups=1,
+                 if_act=True,
+                 act=None):
+        super().__init__()
+
+        self.conv = Conv2D(
+            in_channels=in_c,
+            out_channels=out_c,
+            kernel_size=filter_size,
+            stride=stride,
+            padding=padding,
+            groups=num_groups,
+            bias_attr=False)
+        self.bn = BatchNorm(
+            num_channels=out_c,
+            act=None,
+            param_attr=ParamAttr(regularizer=L2Decay(0.0)),
+            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
+        self.if_act = if_act
+        self.act = _create_act(act)
+
+    def forward(self, x):
+        x = self.conv(x)
+        x = self.bn(x)
+        if self.if_act:
+            x = self.act(x)
+        return x
+
+
+class ResidualUnit(TheseusLayer):
+    def __init__(self,
+                 in_c,
+                 mid_c,
+                 out_c,
+                 filter_size,
+                 stride,
+                 use_se,
+                 act=None):
+        super().__init__()
+        self.if_shortcut = stride == 1 and in_c == out_c
+        self.if_se = use_se
+
+        self.expand_conv = ConvBNLayer(
+            in_c=in_c,
+            out_c=mid_c,
+            filter_size=1,
+            stride=1,
+            padding=0,
+            if_act=True,
+            act=act)
+        self.bottleneck_conv = ConvBNLayer(
+            in_c=mid_c,
+            out_c=mid_c,
+            filter_size=filter_size,
+            stride=stride,
+            padding=int((filter_size - 1) // 2),
+            num_groups=mid_c,
+            if_act=True,
+            act=act)
+        if self.if_se:
+            self.mid_se = SEModule(mid_c)
+        self.linear_conv = ConvBNLayer(
+            in_c=mid_c,
+            out_c=out_c,
+            filter_size=1,
+            stride=1,
+            padding=0,
+            if_act=False,
+            act=None)
+
+    def forward(self, x):
+        identity = x
+        x = self.expand_conv(x)
+        x = self.bottleneck_conv(x)
+        if self.if_se:
+            x = self.mid_se(x)
+        x = self.linear_conv(x)
+        if self.if_shortcut:
+            x = paddle.add(identity, x)
+        return x
+
+
+# nn.Hardsigmoid can't transfer "slope" and "offset" in nn.functional.hardsigmoid
+class Hardsigmoid(TheseusLayer):
+    def __init__(self, slope=0.2, offset=0.5):
+        super().__init__()
+        self.slope = slope
+        self.offset = offset
+
+    def forward(self, x):
+        return nn.functional.hardsigmoid(
+            x, slope=self.slope, offset=self.offset)
+
+
+class SEModule(TheseusLayer):
+    def __init__(self, channel, reduction=4):
+        super().__init__()
+        self.avg_pool = AdaptiveAvgPool2D(1)
+        self.conv1 = Conv2D(
+            in_channels=channel,
+            out_channels=channel // reduction,
+            kernel_size=1,
+            stride=1,
+            padding=0)
+        self.relu = nn.ReLU()
+        self.conv2 = Conv2D(
+            in_channels=channel // reduction,
+            out_channels=channel,
+            kernel_size=1,
+            stride=1,
+            padding=0)
+        self.hardsigmoid = Hardsigmoid(slope=0.2, offset=0.5)
+
+    def forward(self, x):
+        identity = x
+        x = self.avg_pool(x)
+        x = self.conv1(x)
+        x = self.relu(x)
+        x = self.conv2(x)
+        x = self.hardsigmoid(x)
+        return paddle.multiply(x=identity, y=x)
+
+
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+    if pretrained is False:
+        pass
+    elif pretrained is True:
+        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+    elif isinstance(pretrained, str):
+        load_dygraph_pretrain(model, pretrained)
+    else:
+        raise RuntimeError(
+            "pretrained type is not available. Please use `string` or `boolean` type."
+        )
+
+
+def MobileNetV3_small_x0_35(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_small_x0_35
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["small"],
+        scale=0.35,
+        class_squeeze=LAST_SECOND_CONV_SMALL,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_35"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_small_x0_5(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_small_x0_5
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["small"],
+        scale=0.5,
+        class_squeeze=LAST_SECOND_CONV_SMALL,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_5"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_small_x0_75(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_small_x0_75
+    Args:
+        pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise.
+                    if str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["small"],
+        scale=0.75,
+        class_squeeze=LAST_SECOND_CONV_SMALL,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_75"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_small_x1_0(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_small_x1_0
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["small"],
+        scale=1.0,
+        class_squeeze=LAST_SECOND_CONV_SMALL,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_0"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_small_x1_25(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_small_x1_25
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["small"],
+        scale=1.25,
+        class_squeeze=LAST_SECOND_CONV_SMALL,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_25"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_large_x0_35(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_large_x0_35
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["large"],
+        scale=0.35,
+        class_squeeze=LAST_SECOND_CONV_LARGE,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_35"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_large_x0_5(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_large_x0_5
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["large"],
+        scale=0.5,
+        class_squeeze=LAST_SECOND_CONV_LARGE,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_5"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_large_x0_75(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_large_x0_75
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["large"],
+        scale=0.75,
+        class_squeeze=LAST_SECOND_CONV_LARGE,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_75"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_large_x1_0(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_large_x1_0
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["large"],
+        scale=1.0,
+        class_squeeze=LAST_SECOND_CONV_LARGE,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_0"],
+                     use_ssld)
+    return model
+
+
+def MobileNetV3_large_x1_25(pretrained=False, use_ssld=False, **kwargs):
+    """
+    MobileNetV3_large_x1_25
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
+    """
+    model = MobileNetV3(
+        config=NET_CONFIG["large"],
+        scale=1.25,
+        class_squeeze=LAST_SECOND_CONV_LARGE,
+        **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_25"],
+                     use_ssld)
+    return model
diff --git a/ppcls/arch/backbone/legendary_models/resnet.py b/ppcls/arch/backbone/legendary_models/resnet.py
index 1992504a..5d107fe2 100644
--- a/ppcls/arch/backbone/legendary_models/resnet.py
+++ b/ppcls/arch/backbone/legendary_models/resnet.py
@@ -24,26 +24,34 @@ from paddle.nn.initializer import Uniform
 import math
 
 from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
-from ppcls.utils.save_load import load_dygraph_pretrain_from, load_dygraph_pretrain_from_url
-
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
 
 MODEL_URLS = {
-    "ResNet18": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams",
-    "ResNet18_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams",
-    "ResNet34": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams",
-    "ResNet34_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams",
-    "ResNet50": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams",
-    "ResNet50_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams",
-    "ResNet101": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams",
-    "ResNet101_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams",
-    "ResNet152": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams",
-    "ResNet152_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams",
-    "ResNet200_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams",
+    "ResNet18":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
+    "ResNet18_vd":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
+    "ResNet34":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
+    "ResNet34_vd":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
+    "ResNet50":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
+    "ResNet50_vd":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
+    "ResNet101":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
+    "ResNet101_vd":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
+    "ResNet152":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
+    "ResNet152_vd":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
+    "ResNet200_vd":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
 }
 
 __all__ = MODEL_URLS.keys()
-
-
 '''
 ResNet config: dict.
     key: depth of ResNet.
@@ -55,17 +63,35 @@ ResNet config: dict.
 '''
 NET_CONFIG = {
     "18": {
-        "block_type": "BasicBlock", "block_depth": [2, 2, 2, 2], "num_channels": [64, 64, 128, 256]},
+        "block_type": "BasicBlock",
+        "block_depth": [2, 2, 2, 2],
+        "num_channels": [64, 64, 128, 256]
+    },
     "34": {
-        "block_type": "BasicBlock", "block_depth": [3, 4, 6, 3], "num_channels": [64, 64, 128, 256]},
+        "block_type": "BasicBlock",
+        "block_depth": [3, 4, 6, 3],
+        "num_channels": [64, 64, 128, 256]
+    },
     "50": {
-        "block_type": "BottleneckBlock", "block_depth": [3, 4, 6, 3], "num_channels": [64, 256, 512, 1024]},
+        "block_type": "BottleneckBlock",
+        "block_depth": [3, 4, 6, 3],
+        "num_channels": [64, 256, 512, 1024]
+    },
     "101": {
-        "block_type": "BottleneckBlock", "block_depth": [3, 4, 23, 3], "num_channels": [64, 256, 512, 1024]},
+        "block_type": "BottleneckBlock",
+        "block_depth": [3, 4, 23, 3],
+        "num_channels": [64, 256, 512, 1024]
+    },
     "152": {
-        "block_type": "BottleneckBlock", "block_depth": [3, 8, 36, 3], "num_channels": [64, 256, 512, 1024]},
+        "block_type": "BottleneckBlock",
+        "block_depth": [3, 8, 36, 3],
+        "num_channels": [64, 256, 512, 1024]
+    },
     "200": {
-        "block_type": "BottleneckBlock", "block_depth": [3, 12, 48, 3], "num_channels": [64, 256, 512, 1024]},
+        "block_type": "BottleneckBlock",
+        "block_depth": [3, 12, 48, 3],
+        "num_channels": [64, 256, 512, 1024]
+    },
 }
 
 
@@ -110,14 +136,14 @@ class ConvBNLayer(TheseusLayer):
 
 
 class BottleneckBlock(TheseusLayer):
-    def __init__(self,
-                 num_channels,
-                 num_filters,
-                 stride,
-                 shortcut=True,
-                 if_first=False,
-                 lr_mult=1.0,
-                ):
+    def __init__(
+            self,
+            num_channels,
+            num_filters,
+            stride,
+            shortcut=True,
+            if_first=False,
+            lr_mult=1.0, ):
         super().__init__()
 
         self.conv0 = ConvBNLayer(
@@ -222,16 +248,15 @@ class ResNet(TheseusLayer):
         version: str="vb". Different version of ResNet, version vd can perform better. 
         class_num: int=1000. The number of classes.
         lr_mult_list: list. Control the learning rate of different stages.
-        pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
     Returns:
         model: nn.Layer. Specific ResNet model depends on args.
     """
+
     def __init__(self,
                  config,
                  version="vb",
                  class_num=1000,
-                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
-                 pretrained=False):
+                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
         super().__init__()
 
         self.cfg = config
@@ -243,51 +268,46 @@ class ResNet(TheseusLayer):
         self.block_type = self.cfg["block_type"]
         self.num_channels = self.cfg["num_channels"]
         self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
-        self.pretrained = pretrained   
-     
+
         assert isinstance(self.lr_mult_list, (
             list, tuple
         )), "lr_mult_list should be in (list, tuple) but got {}".format(
             type(self.lr_mult_list))
-        assert len(
-            self.lr_mult_list
-        ) == 5, "lr_mult_list length should be 5 but got {}".format(
-            len(self.lr_mult_list))
-        
+        assert len(self.lr_mult_list
+                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
+                       len(self.lr_mult_list))
 
         self.stem_cfg = {
             #num_channels, num_filters, filter_size, stride
             "vb": [[3, 64, 7, 2]],
-            "vd": [[3, 32, 3, 2],
-                   [32, 32, 3, 1],
-                   [32, 64, 3, 1]]}
-        
+            "vd": [[3, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
+        }
+
         self.stem = nn.Sequential(*[
             ConvBNLayer(
-                    num_channels=in_c,
-                    num_filters=out_c,
-                    filter_size=k,
-                    stride=s,
-                    act="relu",
-                    lr_mult=self.lr_mult_list[0])
+                num_channels=in_c,
+                num_filters=out_c,
+                filter_size=k,
+                stride=s,
+                act="relu",
+                lr_mult=self.lr_mult_list[0])
             for in_c, out_c, k, s in self.stem_cfg[version]
         ])
-        
+
         self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
         block_list = []
         for block_idx in range(len(self.block_depth)):
             shortcut = False
             for i in range(self.block_depth[block_idx]):
-                block_list.append(
-                    globals()[self.block_type](
-                    num_channels=self.num_channels[block_idx]
-                    if i == 0 else self.num_filters[block_idx] * self.channels_mult,
+                block_list.append(globals()[self.block_type](
+                    num_channels=self.num_channels[block_idx] if i == 0 else
+                    self.num_filters[block_idx] * self.channels_mult,
                     num_filters=self.num_filters[block_idx],
                     stride=2 if i == 0 and block_idx != 0 else 1,
                     shortcut=shortcut,
                     if_first=block_idx == i == 0 if version == "vd" else True,
                     lr_mult=self.lr_mult_list[block_idx + 1]))
-                shortcut = True    
+                shortcut = True
         self.blocks = nn.Sequential(*block_list)
 
         self.avg_pool = AdaptiveAvgPool2D(1)
@@ -297,8 +317,7 @@ class ResNet(TheseusLayer):
         self.fc = Linear(
             self.avg_pool_channels,
             self.class_num,
-            weight_attr=ParamAttr(
-                initializer=Uniform(-stdv, stdv)))
+            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
 
     def forward(self, x):
         x = self.stem(x)
@@ -310,254 +329,179 @@ class ResNet(TheseusLayer):
         return x
 
 
-def ResNet18(**args):
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+    if pretrained is False:
+        pass
+    elif pretrained is True:
+        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+    elif isinstance(pretrained, str):
+        load_dygraph_pretrain(model, pretrained)
+    else:
+        raise RuntimeError(
+            "pretrained type is not available. Please use `string` or `boolean` type."
+        )
+
+
+def ResNet18(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet18
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet18` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["18"], version="vb", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet18"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["18"], version="vb", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
     return model
 
 
-def ResNet18_vd(**args):
+def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet18_vd
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet18_vd` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["18"], version="vd", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet18_vd"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["18"], version="vd", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
     return model
 
 
-def ResNet34(**args):
+def ResNet34(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet34
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet34` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["34"], version="vb", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet34"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["34"], version="vb", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
     return model
 
 
-def ResNet34_vd(**args):
+def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet34_vd
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet34_vd` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["34"], version="vd", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet34_vd"], use_ssld=True)
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["34"], version="vd", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
     return model
 
 
-def ResNet50(**args):
+def ResNet50(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet50
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet50` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["50"], version="vb", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet50"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["50"], version="vb", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
     return model
 
 
-def ResNet50_vd(**args):
+def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet50_vd
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet50_vd` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["50"], version="vd", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet50_vd"], use_ssld=True)
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["50"], version="vd", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
     return model
 
 
-def ResNet101(**args):
+def ResNet101(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet101
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet101` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["101"], version="vb", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet101"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["101"], version="vb", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
     return model
 
 
-def ResNet101_vd(**args):
+def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet101_vd
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet101_vd` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["101"], version="vd", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet101_vd"], use_ssld=True)
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["101"], version="vd", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
     return model
 
 
-def ResNet152(**args):
+def ResNet152(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet152
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet152` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["152"], version="vb", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet152"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["152"], version="vb", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
     return model
 
 
-def ResNet152_vd(**args):
+def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet152_vd
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet152_vd` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["152"], version="vd", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet152_vd"])
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["152"], version="vd", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
     return model
 
 
-def ResNet200_vd(**args):
+def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
     """
     ResNet200_vd
     Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
-            pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
     Returns:
         model: nn.Layer. Specific `ResNet200_vd` model depends on args.
     """
-    model = ResNet(config=NET_CONFIG["200"], version="vd", **args)
-    if isinstance(model.pretrained, bool):
-        if model.pretrained is True:
-            load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet200_vd"], use_ssld=True)
-    elif isinstance(model.pretrained, str):
-        load_dygraph_pretrain(model, model.pretrained)
-    else:
-        raise RuntimeError(
-            "pretrained type is not available. Please use `string` or `boolean` type")
+    model = ResNet(config=NET_CONFIG["200"], version="vd", **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
     return model
diff --git a/ppcls/arch/backbone/legendary_models/vgg.py b/ppcls/arch/backbone/legendary_models/vgg.py
index b127dd27..7868b51e 100644
--- a/ppcls/arch/backbone/legendary_models/vgg.py
+++ b/ppcls/arch/backbone/legendary_models/vgg.py
@@ -14,16 +14,24 @@
 
 from __future__ import absolute_import, division, print_function
 
-import paddle
-from paddle import ParamAttr
 import paddle.nn as nn
 from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
 from paddle.nn import MaxPool2D
 
 from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
-from ppcls.utils.save_load import load_dygraph_pretrain
-
-__all__ = ["VGG11", "VGG13", "VGG16", "VGG19"]
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
+
+MODEL_URLS = {
+    "VGG11":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams",
+    "VGG13":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams",
+    "VGG16":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams",
+    "VGG19":
+    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams",
+}
+__all__ = MODEL_URLS.keys()
 
 # VGG config
 # key: VGG network depth
@@ -36,68 +44,12 @@ NET_CONFIG = {
 }
 
 
-def VGG11(**args):
-    """
-    VGG11
-    Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
-    Returns:
-        model: nn.Layer. Specific `VGG11` model depends on args.
-    """
-    model = VGGNet(config=NET_CONFIG[11], **args)
-    return model
-
-
-def VGG13(**args):
-    """
-    VGG13
-    Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
-    Returns:
-        model: nn.Layer. Specific `VGG11` model depends on args.
-    """
-    model = VGGNet(config=NET_CONFIG[13], **args)
-    return model
-
-
-def VGG16(**args):
-    """
-    VGG16
-    Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
-    Returns:
-        model: nn.Layer. Specific `VGG11` model depends on args.
-    """
-    model = VGGNet(config=NET_CONFIG[16], **args)
-    return model
-
-
-def VGG19(**args):
-    """
-    VGG19
-    Args:
-        kwargs: 
-            class_num: int=1000. Output dim of last fc layer.
-            stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
-    Returns:
-        model: nn.Layer. Specific `VGG11` model depends on args.
-    """
-    model = VGGNet(config=NET_CONFIG[19], **args)
-    return model
-
-
 class ConvBlock(TheseusLayer):
     def __init__(self, input_channels, output_channels, groups):
-        super(ConvBlock, self).__init__()
+        super().__init__()
 
         self.groups = groups
-        self._conv_1 = Conv2D(
+        self.conv1 = Conv2D(
             in_channels=input_channels,
             out_channels=output_channels,
             kernel_size=3,
@@ -105,7 +57,7 @@ class ConvBlock(TheseusLayer):
             padding=1,
             bias_attr=False)
         if groups == 2 or groups == 3 or groups == 4:
-            self._conv_2 = Conv2D(
+            self.conv2 = Conv2D(
                 in_channels=output_channels,
                 out_channels=output_channels,
                 kernel_size=3,
@@ -113,7 +65,7 @@ class ConvBlock(TheseusLayer):
                 padding=1,
                 bias_attr=False)
         if groups == 3 or groups == 4:
-            self._conv_3 = Conv2D(
+            self.conv3 = Conv2D(
                 in_channels=output_channels,
                 out_channels=output_channels,
                 kernel_size=3,
@@ -121,7 +73,7 @@ class ConvBlock(TheseusLayer):
                 padding=1,
                 bias_attr=False)
         if groups == 4:
-            self._conv_4 = Conv2D(
+            self.conv4 = Conv2D(
                 in_channels=output_channels,
                 out_channels=output_channels,
                 kernel_size=3,
@@ -129,73 +81,148 @@ class ConvBlock(TheseusLayer):
                 padding=1,
                 bias_attr=False)
 
-        self._pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
-        self._relu = nn.ReLU()
+        self.max_pool = MaxPool2D(kernel_size=2, stride=2, padding=0)
+        self.relu = nn.ReLU()
 
     def forward(self, inputs):
-        x = self._conv_1(inputs)
-        x = self._relu(x)
+        x = self.conv1(inputs)
+        x = self.relu(x)
         if self.groups == 2 or self.groups == 3 or self.groups == 4:
-            x = self._conv_2(x)
-            x = self._relu(x)
+            x = self.conv2(x)
+            x = self.relu(x)
         if self.groups == 3 or self.groups == 4:
-            x = self._conv_3(x)
-            x = self._relu(x)
+            x = self.conv3(x)
+            x = self.relu(x)
         if self.groups == 4:
-            x = self._conv_4(x)
-            x = self._relu(x)
-        x = self._pool(x)
+            x = self.conv4(x)
+            x = self.relu(x)
+        x = self.max_pool(x)
         return x
 
 
 class VGGNet(TheseusLayer):
-    def __init__(self,
-                 config,
-                 stop_grad_layers=0,
-                 class_num=1000,
-                 pretrained=False,
-                 **args):
+    """
+    VGGNet
+    Args:
+        config: list. VGGNet config.
+        stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
+        class_num: int=1000. The number of classes.
+    Returns:
+        model: nn.Layer. Specific VGG model depends on args.
+    """
+
+    def __init__(self, config, stop_grad_layers=0, class_num=1000):
         super().__init__()
 
         self.stop_grad_layers = stop_grad_layers
 
-        self._conv_block_1 = ConvBlock(3, 64, config[0])
-        self._conv_block_2 = ConvBlock(64, 128, config[1])
-        self._conv_block_3 = ConvBlock(128, 256, config[2])
-        self._conv_block_4 = ConvBlock(256, 512, config[3])
-        self._conv_block_5 = ConvBlock(512, 512, config[4])
+        self.conv_block_1 = ConvBlock(3, 64, config[0])
+        self.conv_block_2 = ConvBlock(64, 128, config[1])
+        self.conv_block_3 = ConvBlock(128, 256, config[2])
+        self.conv_block_4 = ConvBlock(256, 512, config[3])
+        self.conv_block_5 = ConvBlock(512, 512, config[4])
 
-        self._relu = nn.ReLU()
-        self._flatten = nn.Flatten(start_axis=1, stop_axis=-1)
+        self.relu = nn.ReLU()
+        self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
 
         for idx, block in enumerate([
-                self._conv_block_1, self._conv_block_2, self._conv_block_3,
-                self._conv_block_4, self._conv_block_5
+                self.conv_block_1, self.conv_block_2, self.conv_block_3,
+                self.conv_block_4, self.conv_block_5
         ]):
             if self.stop_grad_layers >= idx + 1:
                 for param in block.parameters():
                     param.trainable = False
 
-        self._drop = Dropout(p=0.5, mode="downscale_in_infer")
-        self._fc1 = Linear(7 * 7 * 512, 4096)
-        self._fc2 = Linear(4096, 4096)
-        self._out = Linear(4096, class_num)
-
-        if pretrained is not None:
-            load_dygraph_pretrain(self, pretrained)
+        self.drop = Dropout(p=0.5, mode="downscale_in_infer")
+        self.fc1 = Linear(7 * 7 * 512, 4096)
+        self.fc2 = Linear(4096, 4096)
+        self.fc3 = Linear(4096, class_num)
 
     def forward(self, inputs):
-        x = self._conv_block_1(inputs)
-        x = self._conv_block_2(x)
-        x = self._conv_block_3(x)
-        x = self._conv_block_4(x)
-        x = self._conv_block_5(x)
-        x = self._flatten(x)
-        x = self._fc1(x)
-        x = self._relu(x)
-        x = self._drop(x)
-        x = self._fc2(x)
-        x = self._relu(x)
-        x = self._drop(x)
-        x = self._out(x)
+        x = self.conv_block_1(inputs)
+        x = self.conv_block_2(x)
+        x = self.conv_block_3(x)
+        x = self.conv_block_4(x)
+        x = self.conv_block_5(x)
+        x = self.flatten(x)
+        x = self.fc1(x)
+        x = self.relu(x)
+        x = self.drop(x)
+        x = self.fc2(x)
+        x = self.relu(x)
+        x = self.drop(x)
+        x = self.fc3(x)
         return x
+
+
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+    if pretrained is False:
+        pass
+    elif pretrained is True:
+        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+    elif isinstance(pretrained, str):
+        load_dygraph_pretrain(model, pretrained)
+    else:
+        raise RuntimeError(
+            "pretrained type is not available. Please use `string` or `boolean` type."
+        )
+
+
+def VGG11(pretrained=False, use_ssld=False, **kwargs):
+    """
+    VGG11
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `VGG11` model depends on args.
+    """
+    model = VGGNet(config=NET_CONFIG[11], **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["VGG11"], use_ssld)
+    return model
+
+
+def VGG13(pretrained=False, use_ssld=False, **kwargs):
+    """
+    VGG13
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `VGG13` model depends on args.
+    """
+    model = VGGNet(config=NET_CONFIG[13], **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["VGG13"], use_ssld)
+    return model
+
+
+def VGG16(pretrained=False, use_ssld=False, **kwargs):
+    """
+    VGG16
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `VGG16` model depends on args.
+    """
+    model = VGGNet(config=NET_CONFIG[16], **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["VGG16"], use_ssld)
+    return model
+
+
+def VGG19(pretrained=False, use_ssld=False, **kwargs):
+    """
+    VGG19
+    Args:
+        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+                    If str, means the path of the pretrained model.
+        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+    Returns:
+        model: nn.Layer. Specific `VGG19` model depends on args.
+    """
+    model = VGGNet(config=NET_CONFIG[19], **kwargs)
+    _load_pretrained(pretrained, model, MODEL_URLS["VGG19"], use_ssld)
+    return model
-- 
GitLab