Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
2d874f4b
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2d874f4b
编写于
4月 26, 2021
作者:
L
lyuwenyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update function name to lower case
上级
c31931eb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
93 addition
and
106 deletion
+93
-106
hubconf.py
hubconf.py
+93
-106
未找到文件。
hubconf.py
浏览文件 @
2d874f4b
...
@@ -15,20 +15,7 @@
...
@@ -15,20 +15,7 @@
dependencies
=
[
'paddle'
,
'numpy'
]
dependencies
=
[
'paddle'
,
'numpy'
]
import
paddle
import
paddle
from
ppcls.modeling
import
architectures
from
ppcls.modeling.architectures
import
alexnet
as
_alexnet
from
ppcls.modeling.architectures
import
vgg
as
_vgg
from
ppcls.modeling.architectures
import
resnet
as
_resnet
from
ppcls.modeling.architectures
import
squeezenet
as
_squeezenet
from
ppcls.modeling.architectures
import
densenet
as
_densenet
from
ppcls.modeling.architectures
import
inception_v3
as
_inception_v3
from
ppcls.modeling.architectures
import
inception_v4
as
_inception_v4
from
ppcls.modeling.architectures
import
googlenet
as
_googlenet
from
ppcls.modeling.architectures
import
shufflenet_v2
as
_shufflenet_v2
from
ppcls.modeling.architectures
import
mobilenet_v1
as
_mobilenet_v1
from
ppcls.modeling.architectures
import
mobilenet_v2
as
_mobilenet_v2
from
ppcls.modeling.architectures
import
mobilenet_v3
as
_mobilenet_v3
from
ppcls.modeling.architectures
import
resnext
as
_resnext
def
_load_pretrained_parameters
(
model
,
name
):
def
_load_pretrained_parameters
(
model
,
name
):
...
@@ -39,7 +26,7 @@ def _load_pretrained_parameters(model, name):
...
@@ -39,7 +26,7 @@ def _load_pretrained_parameters(model, name):
return
model
return
model
def
AlexN
et
(
pretrained
=
False
,
**
kwargs
):
def
alexn
et
(
pretrained
=
False
,
**
kwargs
):
"""
"""
AlexNet
AlexNet
Args:
Args:
...
@@ -49,14 +36,14 @@ def AlexNet(pretrained=False, **kwargs):
...
@@ -49,14 +36,14 @@ def AlexNet(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `AlexNet` model depends on args.
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
"""
model
=
_alexnet
.
AlexNet
(
**
kwargs
)
model
=
architectures
.
AlexNet
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
return
model
return
model
def
VGG
11
(
pretrained
=
False
,
**
kwargs
):
def
vgg
11
(
pretrained
=
False
,
**
kwargs
):
"""
"""
VGG11
VGG11
Args:
Args:
...
@@ -67,14 +54,14 @@ def VGG11(pretrained=False, **kwargs):
...
@@ -67,14 +54,14 @@ def VGG11(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
model: nn.Layer. Specific `VGG11` model depends on args.
"""
"""
model
=
_vgg
.
VGG11
(
**
kwargs
)
model
=
architectures
.
VGG11
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
return
model
return
model
def
VGG
13
(
pretrained
=
False
,
**
kwargs
):
def
vgg
13
(
pretrained
=
False
,
**
kwargs
):
"""
"""
VGG13
VGG13
Args:
Args:
...
@@ -85,14 +72,14 @@ def VGG13(pretrained=False, **kwargs):
...
@@ -85,14 +72,14 @@ def VGG13(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
model: nn.Layer. Specific `VGG13` model depends on args.
"""
"""
model
=
_vgg
.
VGG13
(
**
kwargs
)
model
=
architectures
.
VGG13
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
return
model
return
model
def
VGG
16
(
pretrained
=
False
,
**
kwargs
):
def
vgg
16
(
pretrained
=
False
,
**
kwargs
):
"""
"""
VGG16
VGG16
Args:
Args:
...
@@ -103,14 +90,14 @@ def VGG16(pretrained=False, **kwargs):
...
@@ -103,14 +90,14 @@ def VGG16(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `VGG16` model depends on args.
model: nn.Layer. Specific `VGG16` model depends on args.
"""
"""
model
=
_vgg
.
VGG16
(
**
kwargs
)
model
=
architectures
.
VGG16
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
return
model
return
model
def
VGG
19
(
pretrained
=
False
,
**
kwargs
):
def
vgg
19
(
pretrained
=
False
,
**
kwargs
):
"""
"""
VGG19
VGG19
Args:
Args:
...
@@ -121,14 +108,14 @@ def VGG19(pretrained=False, **kwargs):
...
@@ -121,14 +108,14 @@ def VGG19(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `VGG19` model depends on args.
model: nn.Layer. Specific `VGG19` model depends on args.
"""
"""
model
=
_vgg
.
VGG19
(
**
kwargs
)
model
=
architectures
.
VGG19
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
return
model
return
model
def
ResN
et18
(
pretrained
=
False
,
**
kwargs
):
def
resn
et18
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet18
ResNet18
Args:
Args:
...
@@ -140,14 +127,14 @@ def ResNet18(pretrained=False, **kwargs):
...
@@ -140,14 +127,14 @@ def ResNet18(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
"""
model
=
_resnet
.
ResNet18
(
**
kwargs
)
model
=
architectures
.
ResNet18
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
return
model
return
model
def
ResN
et34
(
pretrained
=
False
,
**
kwargs
):
def
resn
et34
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet34
ResNet34
Args:
Args:
...
@@ -159,14 +146,14 @@ def ResNet34(pretrained=False, **kwargs):
...
@@ -159,14 +146,14 @@ def ResNet34(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
"""
model
=
_resnet
.
ResNet34
(
**
kwargs
)
model
=
architectures
.
ResNet34
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
return
model
return
model
def
ResN
et50
(
pretrained
=
False
,
**
kwargs
):
def
resn
et50
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet50
ResNet50
Args:
Args:
...
@@ -178,14 +165,14 @@ def ResNet50(pretrained=False, **kwargs):
...
@@ -178,14 +165,14 @@ def ResNet50(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
"""
model
=
_resnet
.
ResNet50
(
**
kwargs
)
model
=
architectures
.
ResNet50
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
return
model
return
model
def
ResN
et101
(
pretrained
=
False
,
**
kwargs
):
def
resn
et101
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet101
ResNet101
Args:
Args:
...
@@ -197,14 +184,14 @@ def ResNet101(pretrained=False, **kwargs):
...
@@ -197,14 +184,14 @@ def ResNet101(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
"""
model
=
_resnet
.
ResNet101
(
**
kwargs
)
model
=
architectures
.
ResNet101
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
return
model
return
model
def
ResN
et152
(
pretrained
=
False
,
**
kwargs
):
def
resn
et152
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet152
ResNet152
Args:
Args:
...
@@ -216,14 +203,14 @@ def ResNet152(pretrained=False, **kwargs):
...
@@ -216,14 +203,14 @@ def ResNet152(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
"""
model
=
_resnet
.
ResNet152
(
**
kwargs
)
model
=
architectures
.
ResNet152
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
return
model
return
model
def
SqueezeN
et1_0
(
pretrained
=
False
,
**
kwargs
):
def
squeezen
et1_0
(
pretrained
=
False
,
**
kwargs
):
"""
"""
SqueezeNet1_0
SqueezeNet1_0
Args:
Args:
...
@@ -233,14 +220,14 @@ def SqueezeNet1_0(pretrained=False, **kwargs):
...
@@ -233,14 +220,14 @@ def SqueezeNet1_0(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
"""
"""
model
=
_squeezenet
.
SqueezeNet1_0
(
**
kwargs
)
model
=
architectures
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
return
model
return
model
def
SqueezeN
et1_1
(
pretrained
=
False
,
**
kwargs
):
def
squeezen
et1_1
(
pretrained
=
False
,
**
kwargs
):
"""
"""
SqueezeNet1_1
SqueezeNet1_1
Args:
Args:
...
@@ -250,14 +237,14 @@ def SqueezeNet1_1(pretrained=False, **kwargs):
...
@@ -250,14 +237,14 @@ def SqueezeNet1_1(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
"""
"""
model
=
_squeezenet
.
SqueezeNet1_1
(
**
kwargs
)
model
=
architectures
.
SqueezeNet1_1
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
return
model
return
model
def
DenseN
et121
(
pretrained
=
False
,
**
kwargs
):
def
densen
et121
(
pretrained
=
False
,
**
kwargs
):
"""
"""
DenseNet121
DenseNet121
Args:
Args:
...
@@ -269,14 +256,14 @@ def DenseNet121(pretrained=False, **kwargs):
...
@@ -269,14 +256,14 @@ def DenseNet121(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `DenseNet121` model depends on args.
model: nn.Layer. Specific `DenseNet121` model depends on args.
"""
"""
model
=
_densenet
.
DenseNet121
(
**
kwargs
)
model
=
architectures
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
return
model
return
model
def
DenseN
et161
(
pretrained
=
False
,
**
kwargs
):
def
densen
et161
(
pretrained
=
False
,
**
kwargs
):
"""
"""
DenseNet161
DenseNet161
Args:
Args:
...
@@ -288,14 +275,14 @@ def DenseNet161(pretrained=False, **kwargs):
...
@@ -288,14 +275,14 @@ def DenseNet161(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `DenseNet161` model depends on args.
model: nn.Layer. Specific `DenseNet161` model depends on args.
"""
"""
model
=
_densenet
.
DenseNet161
(
**
kwargs
)
model
=
architectures
.
DenseNet161
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
return
model
return
model
def
DenseN
et169
(
pretrained
=
False
,
**
kwargs
):
def
densen
et169
(
pretrained
=
False
,
**
kwargs
):
"""
"""
DenseNet169
DenseNet169
Args:
Args:
...
@@ -307,14 +294,14 @@ def DenseNet169(pretrained=False, **kwargs):
...
@@ -307,14 +294,14 @@ def DenseNet169(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `DenseNet169` model depends on args.
model: nn.Layer. Specific `DenseNet169` model depends on args.
"""
"""
model
=
_densenet
.
DenseNet169
(
**
kwargs
)
model
=
architectures
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
return
model
return
model
def
DenseN
et201
(
pretrained
=
False
,
**
kwargs
):
def
densen
et201
(
pretrained
=
False
,
**
kwargs
):
"""
"""
DenseNet201
DenseNet201
Args:
Args:
...
@@ -326,14 +313,14 @@ def DenseNet201(pretrained=False, **kwargs):
...
@@ -326,14 +313,14 @@ def DenseNet201(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `DenseNet201` model depends on args.
model: nn.Layer. Specific `DenseNet201` model depends on args.
"""
"""
model
=
_densenet
.
DenseNet201
(
**
kwargs
)
model
=
architectures
.
DenseNet201
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
return
model
return
model
def
DenseN
et264
(
pretrained
=
False
,
**
kwargs
):
def
densen
et264
(
pretrained
=
False
,
**
kwargs
):
"""
"""
DenseNet264
DenseNet264
Args:
Args:
...
@@ -345,14 +332,14 @@ def DenseNet264(pretrained=False, **kwargs):
...
@@ -345,14 +332,14 @@ def DenseNet264(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `DenseNet264` model depends on args.
model: nn.Layer. Specific `DenseNet264` model depends on args.
"""
"""
model
=
_densenet
.
DenseNet264
(
**
kwargs
)
model
=
architectures
.
DenseNet264
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
return
model
return
model
def
InceptionV
3
(
pretrained
=
False
,
**
kwargs
):
def
inceptionv
3
(
pretrained
=
False
,
**
kwargs
):
"""
"""
InceptionV3
InceptionV3
Args:
Args:
...
@@ -362,14 +349,14 @@ def InceptionV3(pretrained=False, **kwargs):
...
@@ -362,14 +349,14 @@ def InceptionV3(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `InceptionV3` model depends on args.
model: nn.Layer. Specific `InceptionV3` model depends on args.
"""
"""
model
=
_inception_v3
.
InceptionV3
(
**
kwargs
)
model
=
architectures
.
InceptionV3
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
return
model
return
model
def
InceptionV
4
(
pretrained
=
False
,
**
kwargs
):
def
inceptionv
4
(
pretrained
=
False
,
**
kwargs
):
"""
"""
InceptionV4
InceptionV4
Args:
Args:
...
@@ -379,14 +366,14 @@ def InceptionV4(pretrained=False, **kwargs):
...
@@ -379,14 +366,14 @@ def InceptionV4(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `InceptionV4` model depends on args.
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
"""
model
=
_inception_v4
.
InceptionV4
(
**
kwargs
)
model
=
architectures
.
InceptionV4
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
return
model
return
model
def
GoogLeN
et
(
pretrained
=
False
,
**
kwargs
):
def
googlen
et
(
pretrained
=
False
,
**
kwargs
):
"""
"""
GoogLeNet
GoogLeNet
Args:
Args:
...
@@ -396,14 +383,14 @@ def GoogLeNet(pretrained=False, **kwargs):
...
@@ -396,14 +383,14 @@ def GoogLeNet(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
model: nn.Layer. Specific `GoogLeNet` model depends on args.
"""
"""
model
=
_googlenet
.
GoogLeNet
(
**
kwargs
)
model
=
architectures
.
GoogLeNet
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
return
model
return
model
def
ShuffleNetV
2_x0_25
(
pretrained
=
False
,
**
kwargs
):
def
shufflenetv
2_x0_25
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ShuffleNetV2_x0_25
ShuffleNetV2_x0_25
Args:
Args:
...
@@ -413,14 +400,14 @@ def ShuffleNetV2_x0_25(pretrained=False, **kwargs):
...
@@ -413,14 +400,14 @@ def ShuffleNetV2_x0_25(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args.
model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args.
"""
"""
model
=
_shufflenet_v2
.
ShuffleNetV2_x0_25
(
**
kwargs
)
model
=
architectures
.
ShuffleNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNetV2_x0_25'
)
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNetV2_x0_25'
)
return
model
return
model
def
MobileNetV
1
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
1
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV1
MobileNetV1
Args:
Args:
...
@@ -430,14 +417,14 @@ def MobileNetV1(pretrained=False, **kwargs):
...
@@ -430,14 +417,14 @@ def MobileNetV1(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
"""
model
=
_mobilenet_v1
.
MobileNetV1
(
**
kwargs
)
model
=
architectures
.
MobileNetV1
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
return
model
return
model
def
MobileNetV
1_x0_25
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
1_x0_25
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV1_x0_25
MobileNetV1_x0_25
Args:
Args:
...
@@ -447,14 +434,14 @@ def MobileNetV1_x0_25(pretrained=False, **kwargs):
...
@@ -447,14 +434,14 @@ def MobileNetV1_x0_25(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
"""
model
=
_mobilenet_v1
.
MobileNetV1_x0_25
(
**
kwargs
)
model
=
architectures
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
return
model
return
model
def
MobileNetV
1_x0_5
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
1_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV1_x0_5
MobileNetV1_x0_5
Args:
Args:
...
@@ -464,14 +451,14 @@ def MobileNetV1_x0_5(pretrained=False, **kwargs):
...
@@ -464,14 +451,14 @@ def MobileNetV1_x0_5(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
"""
model
=
_mobilenet_v1
.
MobileNetV1_x0_5
(
**
kwargs
)
model
=
architectures
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
return
model
return
model
def
MobileNetV
1_x0_75
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
1_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV1_x0_75
MobileNetV1_x0_75
Args:
Args:
...
@@ -481,14 +468,14 @@ def MobileNetV1_x0_75(pretrained=False, **kwargs):
...
@@ -481,14 +468,14 @@ def MobileNetV1_x0_75(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
"""
model
=
_mobilenet_v1
.
MobileNetV1_x0_75
(
**
kwargs
)
model
=
architectures
.
MobileNetV1_x0_75
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
return
model
return
model
def
MobileNetV
2_x0_25
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
2_x0_25
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x0_25
MobileNetV2_x0_25
Args:
Args:
...
@@ -498,14 +485,14 @@ def MobileNetV2_x0_25(pretrained=False, **kwargs):
...
@@ -498,14 +485,14 @@ def MobileNetV2_x0_25(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
"""
"""
model
=
_mobilenet_v2
.
MobileNetV2_x0_25
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
return
model
return
model
def
MobileNetV
2_x0_5
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
2_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x0_5
MobileNetV2_x0_5
Args:
Args:
...
@@ -515,14 +502,14 @@ def MobileNetV2_x0_5(pretrained=False, **kwargs):
...
@@ -515,14 +502,14 @@ def MobileNetV2_x0_5(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
"""
"""
model
=
_mobilenet_v2
.
MobileNetV2_x0_5
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x0_5
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
return
model
return
model
def
MobileNetV
2_x0_75
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
2_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x0_75
MobileNetV2_x0_75
Args:
Args:
...
@@ -532,14 +519,14 @@ def MobileNetV2_x0_75(pretrained=False, **kwargs):
...
@@ -532,14 +519,14 @@ def MobileNetV2_x0_75(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
"""
"""
model
=
_mobilenet_v2
.
MobileNetV2_x0_75
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
return
model
return
model
def
MobileNetV
2_x1_5
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
2_x1_5
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x1_5
MobileNetV2_x1_5
Args:
Args:
...
@@ -549,14 +536,14 @@ def MobileNetV2_x1_5(pretrained=False, **kwargs):
...
@@ -549,14 +536,14 @@ def MobileNetV2_x1_5(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
"""
"""
model
=
_mobilenet_v2
.
MobileNetV2_x1_5
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
return
model
return
model
def
MobileNetV
2_x2_0
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
2_x2_0
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x2_0
MobileNetV2_x2_0
Args:
Args:
...
@@ -566,14 +553,14 @@ def MobileNetV2_x2_0(pretrained=False, **kwargs):
...
@@ -566,14 +553,14 @@ def MobileNetV2_x2_0(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
"""
"""
model
=
_mobilenet_v2
.
MobileNetV2_x2_0
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x2_0
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
return
model
return
model
def
MobileNetV
3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_large_x0_35
MobileNetV3_large_x0_35
Args:
Args:
...
@@ -583,14 +570,14 @@ def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
...
@@ -583,14 +570,14 @@ def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_35
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_large_x0_35
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
return
model
return
model
def
MobileNetV
3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_large_x0_5
MobileNetV3_large_x0_5
Args:
Args:
...
@@ -600,14 +587,14 @@ def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
...
@@ -600,14 +587,14 @@ def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_5
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_large_x0_5
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
return
model
return
model
def
MobileNetV
3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_large_x0_75
MobileNetV3_large_x0_75
Args:
Args:
...
@@ -617,14 +604,14 @@ def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
...
@@ -617,14 +604,14 @@ def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_75
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_large_x0_75
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
return
model
return
model
def
MobileNetV
3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_large_x1_0
MobileNetV3_large_x1_0
Args:
Args:
...
@@ -634,14 +621,14 @@ def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
...
@@ -634,14 +621,14 @@ def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_0
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_large_x1_0
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
return
model
return
model
def
MobileNetV
3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_large_x1_25
MobileNetV3_large_x1_25
Args:
Args:
...
@@ -651,14 +638,14 @@ def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
...
@@ -651,14 +638,14 @@ def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_25
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_large_x1_25
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
return
model
return
model
def
MobileNetV
3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_small_x0_35
MobileNetV3_small_x0_35
Args:
Args:
...
@@ -668,14 +655,14 @@ def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
...
@@ -668,14 +655,14 @@ def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_35
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_small_x0_35
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
return
model
return
model
def
MobileNetV
3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_small_x0_5
MobileNetV3_small_x0_5
Args:
Args:
...
@@ -685,14 +672,14 @@ def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
...
@@ -685,14 +672,14 @@ def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_5
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_small_x0_5
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
return
model
return
model
def
MobileNetV
3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_small_x0_75
MobileNetV3_small_x0_75
Args:
Args:
...
@@ -702,14 +689,14 @@ def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
...
@@ -702,14 +689,14 @@ def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_75
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_small_x0_75
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
return
model
return
model
def
MobileNetV
3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_small_x1_0
MobileNetV3_small_x1_0
Args:
Args:
...
@@ -719,14 +706,14 @@ def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
...
@@ -719,14 +706,14 @@ def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_0
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_small_x1_0
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
return
model
return
model
def
MobileNetV
3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv
3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV3_small_x1_25
MobileNetV3_small_x1_25
Args:
Args:
...
@@ -736,14 +723,14 @@ def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
...
@@ -736,14 +723,14 @@ def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
"""
"""
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_25
(
**
kwargs
)
model
=
architectures
.
MobileNetV3_small_x1_25
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
return
model
return
model
def
ResNeX
t101_32x4d
(
pretrained
=
False
,
**
kwargs
):
def
resnex
t101_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNeXt101_32x4d
ResNeXt101_32x4d
Args:
Args:
...
@@ -753,14 +740,14 @@ def ResNeXt101_32x4d(pretrained=False, **kwargs):
...
@@ -753,14 +740,14 @@ def ResNeXt101_32x4d(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
"""
"""
model
=
_resnext
.
ResNeXt101_32x4d
(
**
kwargs
)
model
=
architectures
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
return
model
return
model
def
ResNeX
t101_64x4d
(
pretrained
=
False
,
**
kwargs
):
def
resnex
t101_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNeXt101_64x4d
ResNeXt101_64x4d
Args:
Args:
...
@@ -770,14 +757,14 @@ def ResNeXt101_64x4d(pretrained=False, **kwargs):
...
@@ -770,14 +757,14 @@ def ResNeXt101_64x4d(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
"""
"""
model
=
_resnext
.
ResNeXt101_64x4d
(
**
kwargs
)
model
=
architectures
.
ResNeXt101_64x4d
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
return
model
return
model
def
ResNeX
t152_32x4d
(
pretrained
=
False
,
**
kwargs
):
def
resnex
t152_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNeXt152_32x4d
ResNeXt152_32x4d
Args:
Args:
...
@@ -787,14 +774,14 @@ def ResNeXt152_32x4d(pretrained=False, **kwargs):
...
@@ -787,14 +774,14 @@ def ResNeXt152_32x4d(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
"""
"""
model
=
_resnext
.
ResNeXt152_32x4d
(
**
kwargs
)
model
=
architectures
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
return
model
return
model
def
ResNeX
t152_64x4d
(
pretrained
=
False
,
**
kwargs
):
def
resnex
t152_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNeXt152_64x4d
ResNeXt152_64x4d
Args:
Args:
...
@@ -804,14 +791,14 @@ def ResNeXt152_64x4d(pretrained=False, **kwargs):
...
@@ -804,14 +791,14 @@ def ResNeXt152_64x4d(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
"""
"""
model
=
_resnext
.
ResNeXt152_64x4d
(
**
kwargs
)
model
=
architectures
.
ResNeXt152_64x4d
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
return
model
return
model
def
ResNeX
t50_32x4d
(
pretrained
=
False
,
**
kwargs
):
def
resnex
t50_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNeXt50_32x4d
ResNeXt50_32x4d
Args:
Args:
...
@@ -821,14 +808,14 @@ def ResNeXt50_32x4d(pretrained=False, **kwargs):
...
@@ -821,14 +808,14 @@ def ResNeXt50_32x4d(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
"""
"""
model
=
_resnext
.
ResNeXt50_32x4d
(
**
kwargs
)
model
=
architectures
.
ResNeXt50_32x4d
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
return
model
return
model
def
ResNeX
t50_64x4d
(
pretrained
=
False
,
**
kwargs
):
def
resnex
t50_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNeXt50_64x4d
ResNeXt50_64x4d
Args:
Args:
...
@@ -838,7 +825,7 @@ def ResNeXt50_64x4d(pretrained=False, **kwargs):
...
@@ -838,7 +825,7 @@ def ResNeXt50_64x4d(pretrained=False, **kwargs):
Returns:
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
"""
model
=
_resnext
.
ResNeXt50_64x4d
(
**
kwargs
)
model
=
architectures
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录